首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical principles determining the protein structure and protein folding are reviewed: (i) the molecular theory of protein secondary structure and the method of its prediction based on this theory; (ii) the existence of a limited set of thermodynamically favourable folding patterns of α- and β-regions in a compact globule which does not depend on the details of the amino acid sequence; (iii) the moderns approaches to the prediction of the folding patterns of α- and β-regions in concrete proteins; (iv) experimental approaches to the mechanism of protein folding. The review reflects theoretical and experimental works of the author and his collaborators as well as those of other groups.  相似文献   

2.
3.
Barnes CO  Pielak GJ 《Proteins》2011,79(2):347-351
In-cell nuclear magnetic resonance spectroscopy is a tool for studying proteins under physiologically relevant conditions. In some instances, however, protein signals from leaked protein are observed in the liquid surrounding the cells. Here, we examine the expression of four proteins in Escherichia coli. We describe the controls that should be used for in-cell NMR experiments and show that leakage is likely when the protein being studied exceeds ~20% of the total cellular protein.  相似文献   

4.
The second osmotic virial coefficients of seven proteins-ovalbumin, ribonuclease A, bovine serum albumin, alpha-lactalbumin, myoglobin, cytochrome c, and catalase-were measured in salt solutions. Comparison of the interaction trends in terms of the dimensionless second virial coefficient b(2) shows that, at low salt concentrations, protein-protein interactions can be either attractive or repulsive, possibly due to the anisotropy of the protein charge distribution. At high salt concentrations, the behavior depends on the salt: In sodium chloride, protein interactions generally show little salt dependence up to very high salt concentrations, whereas in ammonium sulfate, proteins show a sharp drop in b(2) with increasing salt concentration beyond a particular threshold. The experimental phase behavior of the proteins corroborates these observations in that precipitation always follows the drop in b(2). When the proteins crystallize, they do so at slightly lower salt concentrations than seen for precipitation. The b(2) measurements were extended to other salts for ovalbumin and catalase. The trends follow the Hofmeister series, and the effect of the salt can be interpreted as a water-mediated effect between the protein and salt molecules. The b(2) trends quantify protein-protein interactions and provide some understanding of the corresponding phase behavior. The results explain both why ammonium sulfate is among the best crystallization agents, as well as some of the difficulties that can be encountered in protein crystallization.  相似文献   

5.
Prediction of protein function from protein sequence and structure   总被引:1,自引:0,他引:1  
The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.  相似文献   

6.
7.
8.
9.
Liu ZP  Wu LY  Wang Y  Zhang XS  Chen L 《Amino acids》2008,35(3):627-650
One of the major goals of molecular and evolutionary biology is to understand the functions of proteins by extracting functional information from protein sequences, structures and interactions. In this review, we summarize the repertoire of methods currently being applied and report recent progress in the field of in silico annotation of protein function based on the accumulation of vast amounts of sequence and structure data. In particular, we emphasize the newly developed structure-based methods, which are able to identify locally structural motifs and reveal their relationship with protein functions. These methods include computational tools to identify the structural motifs and reveal the strong relationship between these pre-computed local structures and protein functions. We also discuss remaining problems and possible directions for this exciting and challenging area.  相似文献   

10.
The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain.  相似文献   

11.
Neurofilaments (NFs) are composed of triplet proteins, NF-H, NF-M, and NF-L. To understand the dynamics of NFs in vivo, we studied the dynamics of NF-H and compared them to those of NF-L, using the combination of microinjection technique and fluorescence recovery after photobleaching. In the case of NF-L protein, the bleached zone gradually restored its fluorescence intensity with a recovery half time of approximately 35 min. On the other hand, recovery of the bleached zone of NF-H was considerably faster, taking place in approximately 19 min. However, in both cases the bleached zone was stationary. Thus, it was suggested that NF-H is the dynamic component of the NF array and is interchangeable, but that it assembles with the other neurofilament triplet proteins in a more exchangeable way, implying that the location of NF-H is in the periphery of the core NF array mainly composed of NF- L subunits. Immunoelectron microscopy investigations of the incorporation sites of NF-H labeled with biotin compounds also revealed the lateral insertion of NF-H subunits into the preexisting NF array, taking after the pattern seen in the case of NF-L. In summary, our results demonstrate that the dynamics of the L and H subunit proteins in situ are quite different from each other, suggesting different and separated mechanisms or structural specialization underlying the behavior of the two proteins.  相似文献   

12.
Pro-apoptotic Bax is a soluble and monomeric protein under normal physiological conditions. Upon its activation substantial structural rearrangements occur: The protein inserts into the mitochondrial outer membrane and forms higher molecular weight oligomers. Subsequently, the cells can undergo apoptosis. In our studies, we focused on the structural rearrangements of Bax during oligomerization and on the protein stability. Both protein conformations exhibit high stability against thermal denaturation, chemically induced unfolding and proteolytic processing. The oligomeric protein is stable up to 90 °C as well as in solutions of 8 M urea or 6 M guanidinium hydrochloride. Helix 9 appears accessible in the monomer but hidden in the oligomer assessed by proteolysis. Tryptophan fluorescence indicates that the environment of the C-terminal protein half becomes more apolar upon oligomerization, whereas the loop region between helices 1 and 2 gets solvent exposed.  相似文献   

13.
14.
A comparison is made of the N- and C-terminal amino acids from 96 published protein sequences, 26 from prokaryotes, 70 from eukaryotes. The observed frequencies of the N-terminal amino acids methionine, alanine and serine in prokaryotes, and alanine and serine in eukaryotes are significantly higher than expected for a random arrangement of amino acids. At the C-terminal end, the observed frequencies of lysine, asparagine and glutamine in prokaryotes and phenylalanine, asparagine and glutamine in eukaryotes exceed random expectation. These results could be explained by specific proteolytic cleavage during protein synthesis.  相似文献   

15.
Lactoperoxidase (LPO) reacts with H(2)O(2) to sequentially give two Compound I intermediates: the first with a ferryl (Fe(IV)=O) species and a porphyrin radical cation, and the second with the same ferryl species and a presumed protein radical. However, little actual evidence is available for the protein radical. We report here that LPO reacts with the spin trap 3,5-dibromo-4-nitroso-benzenesulfonic acid to give a 1:1 protein-bound radical adduct. Furthermore, LPO undergoes the H(2)O(2)-dependent formation of dimeric and trimeric products. Proteolytic digestion and mass spectrometric analysis indicates that the dimer is held together by a dityrosine link between Tyr-289 in each of two LPO molecules. The dimer retains full catalytic activity and reacts to the same extent with the spin trap, indicating that the spin trap reacts with a radical center other than Tyr-289. The monomeric protein recovered from incubations of LPO with H(2)O(2) is fully active but no longer forms dimers when incubated with H(2)O(2), clear evidence that it has also been structurally modified. Myeloperoxidase, a naturally dimeric protein, and eosinophil peroxidase do not undergo H(2)O(2)-dependent oligomerization. Analysis of the interface in the LPO dimers indicates that the same protein surface is involved in LPO dimerization as in the normal formation of myeloperoxidase dimers. Oligomerization of LPO alters its physical properties and may alter its ability to interact with macromolecular substrates.  相似文献   

16.
17.
18.
The protein covalent modification state of eucaryotic initiation factors eIF-2 and eIF-4B in HeLa cells was examined after they were exposed to a variety of conditions or treatments that regulate protein synthesis. A few factors (e.g., variant pH and sodium fluoride) altered the phosphorylation state of the initiation factor proteins, but the majority (hypertonic medium, ethanol, dimethyl sulfoxide sodium selenite, sodium azide, and colchicine) had no effect on either protein. While initiation factor phosphorylation may regulate protein synthesis in response to many physiological situations, other pathways can regulate protein synthesis under nonphysiological circumstances.  相似文献   

19.
20.
The structure of protein evolution and the evolution of protein structure   总被引:4,自引:3,他引:1  
The observed distribution of protein structures can give us important clues about the underlying evolutionary process, imposing important constraints on possible models. The availability of results from an increasing number of genome projects has made the development of these models an active area of research. Models explaining the observed distribution of structures have focused on the inherent functional capabilities and structural properties of different folds and on the evolutionary dynamics. Increasingly, these elements are being combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号