首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The neurotrophic proteins BDNF and NGF are related in their primary structures, and both have high- and low-affinity receptors on their responsive neurons. In this study, we investigate the extent to which these receptors can discriminate between BDNF and NGF. We found that a 1000-fold excess of the heterologous ligand is needed to reduce binding to the high-affinity receptor by 50%, but that the same concentrations of BDNF and NGF similarly reduce the binding of either ligand to the low-affinity receptor. Results obtained with cells transfected with the low-affinity NGF receptor gene indicate that these cells bind BDNF, in addition to NGF, whereas cells before transfection do not. These data indicate that the low-affinity NGF receptor is also a low-affinity BDNF receptor and that whatever is conferring high-affinity binding and biological response also considerably reinforces the ability of the low-affinity receptor to discriminate between NGF and BDNF.  相似文献   

2.
Nerve growth factor (NGF) is the prototype of a family of neurotrophins that support important neuronal programs such as differentiation and survival of a subset of sympathetic, sensory, and brain neurons. NGF binds to two classes of cell surface receptors: p75LANR and p140TrkA. NGF binding to p140TrkA initiates the neuronal signaling pathway through activation of the tyrosine kinase activity, which subsequently results in a rapid signal transduction through a phosphorylation cascade. To examine this crucial signaling step in more detail, the TrkA extracellular domain polypeptide (TrkA-RED) was overexpressed in Sf21 insect cells and purified to homogeneity. The recombinant TrkA-RED is a 70 kDa acidic glycoprotein with a pI of 5.1, and mimics the intact TrkA receptor for NGF binding with a dissociation constant, Kd, of 2.9 nM. Thus, the recombinant TrkA-RED is functionally competent and can be used to elucidate the interaction of NGF and TrkA receptor. Circular dichroism difference spectra indicated that, upon association of NGF with TrkA-RED, a minor conformational change occurred to form a complex with decreased ordered secondary structure. Interaction between NGF and TrkA-RED was also demonstrated by size exclusion chromatography, light scattering, and chemical crosslinking with evidence for formation of a higher molecular weight complex consistent with a (TrkA-RED)2-(NGF dimer) complex. Association and dissociation rates of 5.6 x 10(5) M(-1) s(-1) and 1.6 x 10(-3) s(-1), respectively, were determined by biosensor technology. Thus, initiation of signaling may stem from NGF-induced receptor dimerization concomitant with a small conformational change.  相似文献   

3.
The nerve growth factor (NGF) family of neurotrophins provides a substantial part of the normal trophic support for sensory neurons during development. Although these neurotrophins, which include Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), continue to be expressed into adulthood, there is little evidence that they are survival factors for adult neurons. Here we have examined the age-dependent neurotrophic requirements of a specialized type of mechanoreceptive neuron, called a D-hair receptor, in the dorsal root ganglion (DRG). Studies using knockout mice have demonstrated that the survival of D-hair receptors is dependent upon both NT-3 and NT-4. Here, we show that the time period when D-hair receptors require these two neurotrophins is different. Survival of D-hair receptors depends on NT-3 early in postnatal development and NT-4 later in the mature animal. The age-dependent loss of D-hair neurons in older NT-4 knockout mice was accompanied by a large reduction (78%) in neurons positive for the NT-4 receptor (trkB) together with neuronal apoptosis in the DRG. This is the first evidence that sensory neurons have a physiological requirement for a single neurotrophin for their continued survival in the adult.  相似文献   

4.
《The Journal of cell biology》1993,122(5):1053-1065
We examined the expression of the neurotrophins (NTFs) and their receptor mRNAs in the rat trigeminal ganglion and the first branchial arch before and at the time of maxillary nerve growth. The maxillary nerve appears first at embryonic day (E)10 and reaches the epithelium of the first branchial arch at E12, as revealed by anti-L1 immunohistochemistry. In situ hybridization demonstrates, that at E10- E11, neurotrophin-3 (NT-3) mRNA is expressed mainly in the mesenchyme, but neurotrophin-4 (NT-4) mRNA in the epithelium of the first branchial arch. NGF and brain-derived neurotrophic factor (BDNF) mRNAs start to be expressed in the distal part of the first brachial arch shortly before its innervation by the maxillary nerve. Trigeminal ganglia strongly express the mRNA of trkA at E10 and thereafter. The expression of mRNAs for low-affinity neurotrophin receptor (LANR), trkB, and trkC in trigeminal ganglia is weak at E10, but increases by E11-E12. NT-3, NT-4, and more prominently BDNF, induce neurite outgrowth from explant cultures of the E10 trigeminal ganglia but no neurites are induced by NGF, despite the expression of trkA. By E12, the neuritogenic potency of NGF also appears. The expression of NT-3 and NT-4 and their receptors in the trigeminal system prior to target field innervation suggests that these NTFs have also other functions than being the target-derived trophic factors.  相似文献   

5.
Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) are members of a family of structurally related proteins termed neurotrophins that promote the growth and survival of neurons in the central and peripheral nervous systems. Each of these proteins bind to at least two membrane receptors. One is the low affinity nerve growth factor receptor (p75), which binds each member of the neurotrophin family. The other is one of a family of tyrosine kinase receptors —trkA binds only NGF, the relatedtrkB receptor binds BDNF and NT-3, andtrkC binds NT-3 alone. This article reviews kinetic and biochemical information on p75 and its relationship to thetrk gene products.  相似文献   

6.
trkB is a tyrosine protein kinase gene highly related to trk, a proto-oncogene that encodes a receptor for nerve growth factor (NGF) and neurotrophin-3 (NT-3). trkB expression is confined to structures of the central and peripheral nervous systems, suggesting it also encodes a receptor for neurotrophic factors. Here we show that brain-derived neurotrophic factor (BDNF) and NT-3, but not NGF, can induce rapid phosphorylation on tyrosine of gp145trkB, one of the receptors encoded by trkB. BDNF and NT-3 can induce DNA synthesis in quiescent NIH 3T3 cells that express gp145trkB. Cotransfection of plasmids encoding gp145trkB and BDNF or NT-3 leads to transformation of recipient NIH 3T3 cells. In these assays, BDNF elicits a response at least two orders of magnitude higher than NT-3. Finally, 125I-NT-3 binds to NIH 3T3 cells expressing gp145trkB; binding can be competed by NT-3 and BDNF but not by NGF. These findings indicate that gp145trkB may function as a neurotrophic receptor for BDNF and NT-3.  相似文献   

7.
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.  相似文献   

8.
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997.  相似文献   

9.
Cultured neural crest cells undergoing differentiation have been shown to contain a subpopulation of cells with specific receptors for nerve growth factor (NGF). These cells are the potential targets of NGF during differentiation and development. This study was done to pharmacologically characterize the binding of NGF to long-term (1- to 3-week) cultures of quail neural crest cells. The data indicate that 125I-NGF binding was specific and saturable, with less than 20% nonspecific binding. Scatchard analysis revealed the presence of one type (class) of receptors with a binding constant (Kd) similar to that of the low-affinity binding site described for embryonic dorsal root and sympathetic ganglia (approximately 3.2 nM). This was corroborated by displacement experiments (Kd of 1.3 nM), in which 125I-NGF binding was measured in the presence of increasing concentrations of nonradioactive NGF. In addition, affinity labeling revealed that the 125I-NGF-receptor complex had a molecular weight of about 93K, characteristic of the low-affinity NGF receptor of PC12 cells. The NGF receptor of cultured neural crest cells was trypsin-sensitive, as is typical of the low-affinity NGF binding sites. These findings indicate that differentiating neural crest cells lack high-affinity 125I-NGF binding sites. In contrast, embryonic dorsal root and sympathetic ganglia cells, known NGF targets, have both high- and low-affinity receptors. Measurements of the differential release of surface-bound 125I-NGF indicated that a relatively small amount (about 14%) of NGF is internalized over a 1-hr period. Cultured neural crest cells which bear NGF receptors were also shown by light microscopic radioautographic techniques to incorporate [3H]thymidine. I suggest, therefore, that cultured neural crest cells which have not terminally differentiated, as judged by morphological criteria and continued proliferation, may express an early developmental form of the NGF receptor.  相似文献   

10.
Analyses of single and double mutants of members of the neurotrophin family and their receptors are reviewed. These data demonstrate that the two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3), and their high-affinity receptors trkB and trkC, are the sole support for the developing afferent innervation of the ear. Neurotrophins are first expressed in the otocyst around the time afferent sensory neurons become postmitotic. They are crucial for the survival of certain topologically distinct populations of sensory neurons. BDNF supports all sensory neurons to the semicircular canals, most sensory neurons to the saccule and utricle, and many sensory neurons to the apex and middle turn of the cochlea. In contrast, NT-3 supports few sensory neurons to the utricle and saccule, all sensory neurons to the basal turn of the cochlea and most sensory neurons to the middle and apical turn. Some topologically restricted effects reflect the pattern of neurotrophin distribution as revealed by in situ hybridization (e.g., loss of all innervation to the semicircular canal sensory epithelia in BDNF or trkB mutants). However, other topologically restricted effects cannot be explained on the basis of current knowledge of neurotrophin or neurotrophin receptor distribution. Data on mutants also support the notion that BDNF may play a role in neonatal plastic reorganization of the pattern of innervation in the ear and possibly the brainstem. In contrast, data obtained thus far on the ability of neurotrophins to rescue adult sensory neuron after insults to cochlear hair cells are less compelling. The ear is a model system to test the interactions of the two neurotrophins, BDNF and NT-3, with their two high-affinity receptors, trkB and trkC.  相似文献   

11.
Regulation of calbindin and calretinin expression by brain-derived neurotrophic factor (BDNF) was examined in primary cultures of cortical neurons using immunocytochemistry and northern blot analysis. Here we report that regulation of calretinin expression by BDNF is in marked contrast to that of calbindin. Indeed, chronic exposure of cultured cortical neurons for 5 days to increasing concentrations of BDNF (0.1-10 ng/ml) resulted in a concentration-dependent decrease in the number of calretinin-positive neurons and a concentration-dependent increase in the number of calbindin-immunoreactive neurons. Consistent with the immunocytochemical analysis, BDNF reduced calretinin mRNA levels and up-regulated calbindin mRNA expression, providing evidence that modifications in gene expression accounted for the changes in the number of calretinin- and calbindin-containing neurons. Among other members of the neurotrophin family, neurotrophin-4 (NT-4), which also acts by activating tyrosine kinase TrkB receptors, exerted effects comparable to those of BDNF, whereas nerve growth factor (NGF) was ineffective. As for BDNF and NT-4, incubation of cortical neurons with neurotrophin-3 (NT-3) also led to a decrease in calretinin expression. However, in contrast to BDNF and NT-4, NT-3 did not affect calbindin expression. Double-labeling experiments evidenced that calretinin- and calbindin-containing neurons belong to distinct neuronal subpopulations, suggesting that BDNF and NT-4 exert opposite effects according to the neurochemical phenotype of the target cell.  相似文献   

12.
13.
The availability of relatively large amounts of nerve growth factor (NGF) has allowed extensive in vitro and in vivo characterization of the neuronal specificity of this neurotrophic factor. The restricted neuronal specificity of NGF (sympathetic neurons, neural crest-derived sensory neurons, basal forebrain cholinergic neurons) has long predicted the existence of other neurotrophic factors possessing different neuronal specificities. Whereas there have been many reports of "activities" distinct from NGF, full characterization of such molecules has been hampered by their extremely low abundance. The recent molecular cloning of brain-derived neurotrophic factor (BDNF) revealed that this protein is closely related to NGF and suggested that these two factors might be members of an even larger gene family. A PCR cloning strategy based on homologies between NGF and BDNF has allowed us to identify and clone a third member of the NGF family which we have termed neurotrophin-3 (NT-3). The establishment of suitable expression systems has now made available sufficient quantities of these proteins to allow us to begin to establish the neuronal specificity of each member of the neurotrophin family, and the role of each in development, maintenance and repair of the PNS and CNS. Using primary cultures of various PNS and CNS regions of the developing chick and rat, and Northern blot analysis, we describe novel neuronal specificities of BDNF, NT-3 and an unrelated neurotrophic factor-ciliary neurotrophic factor (CNTF).  相似文献   

14.
Neurotrophic factors are essential for neuronal survival and function. Recent data have demonstrated that the product of the tyrosine kinase trk proto-oncogene binds NGF and is a component of the high affinity NGF receptor. Analysis of the trkB gene product, gp145trkB, in NIH 3T3 cells indicates that this tyrosine kinase receptor is rapidly phosphorylated on tyrosine residues upon exposure to the NGF-related neurotrophic factors BDNF and NT-3. Furthermore, gp145trkB specifically binds BDNF and NT-3 in NIH 3T3 cells and in hippocampal cells, but does not bind NGF. Thus, the trk family of receptors are likely to be important signal transducers of NGF-related trophic signals in the formation and maintenance of neuronal circuits.  相似文献   

15.
Receptors for the nerve growth factor protein (NGF) have been isolated from three cell types [embryonic chicken sensory neurons (dorsal root sensory ganglia; DRG), rat pheochromocytoma (PC12) and human neuroblastoma (LAN-1) cells] and have been shown to be similar with respect to equilibrium dissociation constants. The present results demonstrate that there are multiple molecular weight species for NGF receptors from DRG neurons and PC12 cells. NGF receptors can be isolated from DRG as four different molecular species of 228, 187, 125, and 112 kilodaltons, and PC12 cells as three molecular species of 203, 118, and 107 kilodaltons. The NGF receptors isolated from DRG show different pH-binding profiles for high- and low-affinity binding. High-affinity binding displays a bell-shaped pH profile with maximum binding between pH 7.0 and 7.9, whereas low-affinity binding is constant between pH 5.0 and 9.1, with a twofold greater binding at pH 3.6. At 22 degrees C, the association rate constant was found to be 9.5 +/- 1.0 X 10(6) M-1 s-1. Two dissociation rate constants were observed. The fast dissociating receptor has a dissociation rate constant of 3.0 +/- 1.5 X 10(-2) s-1, whereas the slow dissociating receptor constant was 2.4 +/- 1.0 X 10(-4) s-1. The equilibrium dissociation constants calculated from the ratio of dissociation to association rate constants are 2.5 X 109-11) M for the high-affinity receptor (type I) and 3.2 X 10(-9) M for the low-affinity receptor (type II). These values are the same as those determined by equilibrium experiments on the isolated receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Interactions between the purified recombinant receptor extracellular domain (RED) of the human low-affinity neurotrophin receptor (LANR) and recombinant human brain-derived neurotrophic factor, neurotrophin-3 (NT-3) and neuotrophin-4/5 have been studied by chemical crosslinking and circular dichroism. Conformational changes subsequent to binding have been shown by these procedures. First, relative affinities of the neurotrophins for RED were determined by binding competition assays in which radioiodinated nerve growth factor (NGF) from mouse submaxillary gland was crosslinked to RED in the presence of varying amounts of unlabeled neurotrophin competitors. RED bound each of the 3 recombinant human neurotrophins with affinities that were indistinguishable from authentic mouse NGF. These results are the first measurement of binding of the neurotrophin family to their common receptor using purified components. In order to study the effect of binding on the conformation of the proteins, CD measurements were made before and after mixing neurotrophins and RED, as had previously been done with NGF and RED (Timm DE, Vissavajjhala P, Ross AH, Neet KE, 1992, Protein Sci 1:1023-1031). Similar changes in CD spectra occurred upon combination of each of the neurotrophins and RED, with negative changes near 220-225 nm and positive changes near 190-200 nm; however, significant differences existed among the various neurotrophin-RED difference spectra. The NT-3/RED complex showed the largest spectral change and NGF the smallest. Thus, specific conformational changes in secondary structure of neurotrophin, RED, or both accompany the binding of each neurotrophin to the extracellular domain of the LANR.  相似文献   

17.
Neurotrophins and their trk receptors constitute major classes of signaling molecules with important actions in the developing and adult nervous system. With regard to the sympathoadrenal cell lineage, which gives rise to sympathetic neurons and chromaffin cells, neurotrophin-3 (NT-3) and nerve growth factor (NGF) are thought to influence developing sympathetic neurons. Neurotrophin requirements of chromaffin cells of the adrenal medulla are less well understood than those for NGF. In order to provide the bases for understanding of putative functions of neurotrophins for the development and maintenance of chromaffin cells and their preganglionic innervation, in situ hybridization has been used to study the expression of brain-derived neurotrophic factor (BDNF) and NT-3, together with their cognate receptors trkB and trkC, in the adrenal gland and in the intermediolateral column (IML) of the spinal cord. BDNF is highly expressed in the embryonic adrenal cortex and later in cells of the cortical reticularis zone. Adrenal medullary chromaffin cells fail to express detectable levels of mRNAs for BDNF, NT-3, and their cognate receptors trkB and trkC. Neurons in the IML express BDNF and trkB, and low levels of NT-3 and trkC. Our data make it unlikely that BDNF and NT-3 serve as retrograde trophic factors for IML neurons but suggest roles of BDNF and NT-3 locally within the spinal cord and possibly for sensory nerves of the adrenal cortex.  相似文献   

18.
Survival and maintenance of vertebrate neurons are influenced by neurotrophic factors which mediate their signal by binding to specific cell surface receptors. We determined the binding sites of human neurotrophin-3 (NT-3) to its receptors trkC and gp75 by mutational analysis and compared them to the analogous interactions of nerve growth factor (NGF) with trkA and gp75. The trkC binding site extends around the central beta-strand bundle and in contrast to NGF does not make use of non-conserved loops and the six N-terminal residues. The gp75 epitope is dominated by loop residues and the C-terminus of NT-3. A novel rapid biological screening procedure allowed the identification of NT-3 mutants that are able to signal efficiently through the non-preferred receptors trkA and trkB, which are specific for NGF and BDNF respectively. Mutation of only seven residues in NT-3 resulted in a human neurotrophin variant which bound to all receptors of the trk family with high affinity and efficiently supported the survival of NGF-, BDNF- and NT-3-dependent neurons. Our results suggest that the specificity among neurotrophic factors is not solely encoded in sequence diversity, but rather in the way each neurotrophin interacts with its preferred receptor.  相似文献   

19.
Multiple defects of the nerve growth factor receptor in human neuroblastomas   总被引:10,自引:0,他引:10  
Neuroblastoma is a tumor of postganglionic sympathetic origin, and nerve growth factor (NGF) is normally required for the survival and differentiation of sympathetic neuroblasts. Since the biological activity of NGF is mediated by the NGF receptor (NGFR), we hypothesized that defects in the NGF/NGFR pathway may play a role in maintenance of the undifferentiated state of neuroblastomas. To test this hypothesis, we examined the structure of the NGFR at the DNA, RNA, and protein levels in a panel of 10 neuroblastoma cell lines. In addition, we examined the function of the NGFR in these lines by analysis of NGF binding kinetics, as well as by the ability of NGF to induce c-fos expression and neurite outgrowth. Southern blot analysis showed that all 10 cell lines possess apparently normal NGFR genes. Northern blot and ligand binding/immunoprecipitation assays revealed four receptor-positive cell lines (NGP, NLF, SK-N-SH, and LA-N-6), with NGFR mRNA and protein of expected sizes (3.8 kilobases and Mr approximately 75,000, respectively). NGF binding assays and Scatchard analyses were performed on the four NGFR-positive lines. The NGP line possesses only low-affinity receptor (Kd approximately 3.5 x 10(-9)), whereas the other three lines express both low- and high-affinity forms (Kd approximately 10(-9) and Kd approximately 10(-11), respectively). However, none of the 10 lines exhibited a response to NGF treatment as assayed by c-fos mRNA induction and neurite extension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Abstract: The ability of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) to promote neuronal survival and phenotypic differentiation was examined in dissociated cultures from embryonic day 16 rat cerebellum. BDNF treatment increased the survival of neuron-specific enolase-immunopositive cells by 250 and 400% after 8 and 10 days in culture, respectively. A subpopulation of these neurons, the Purkinje cells, identified by calbindin staining, was increased to an equivalent extent, ∼200%, following BDNF, NT-4/5, or NT-3 treatment. The number of GABAergic neurons, identified by GABA immunoreactivity, was greatly increased by treatment with BDNF (470%) and moderately by NT-4/5 (46%), whereas NT-3 was without effect. NGF failed to increase the number of either Purkinje cells or GABAergic neurons. Addition of BDNF within 48 h of cell plating was required to obtain a maximal increase in Purkinje cell number after 8 days. In contrast, the NT-3 responses were nearly equivalent even if treatment was delayed for 96 h after plating. BDNF, NT-4/5, and NT-3, but not NGF, induced the rapid expression of the immediate early gene c- fos . Immunocytochemical double-labeling with antibodies to c-fos and calbindin was used to identify Purkinje cells that responded to neurotrophin treatment by induction of c-fos. After 4 days in vitro, both BDNF and NT-3 induced the formation of c-fos protein in calbindin-immunopositive neurons, whereas NT-4/5 did not. The latter results suggest that although BDNF and NT-4/5 have been shown to act through a common receptor, TrkB, it appears that the effects of BDNF and NT-4/5 are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号