首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hindson VJ  Shaw WV 《Biochemistry》2003,42(10):3113-3119
Although serine acetyltransferase (SAT) from Escherichia coli is homologous with a number of bacterial enzymes that catalyze O-acetyl transfer by a sequential (ternary complex) mechanism, it has been suggested, from experiments with the nearly identical enzyme from Salmonella typhimurium, that the reaction could proceed via an acetyl-enzyme intermediate. To resolve the matter, the E. coli gene for SAT was overexpressed and the enzyme purified 13-fold to homogeneity. The results of a steady-state kinetic analysis of the forward reaction are diagnostic for a ternary complex mechanism, and the response of SAT to dead-end inhibitors indicates a random order for the addition of substrates. The linearity of primary double-reciprocal plots, in the presence and absence of dead-end inhibitors, argues that interconversion of ternary complexes is not significantly faster than kcat, whereas substrate inhibition by serine suggests that breakdown of the SAT.CoA binary complex is rate-determining. The results of equilibrium isotope exchange experiments, for both half-reactions, rule out a "ping-pong" mechanism involving an acetyl-enzyme intermediate, and a pre-steady-state kinetic analysis of the turnover of AcCoA supports such a conclusion. Kinetic data for the reverse reaction (acetylation of CoA by O-acetylserine) are also consistent with a steady-state random-order mechanism, wherein both the breakdown of the SAT*serine complex and the interconversion of ternary complexes are partially rate-determining.  相似文献   

2.
D B Wigley  J P Derrick  W V Shaw 《FEBS letters》1990,277(1-2):267-271
An expression vector has been constructed which increases the expression of serine acetyltransferase (SAT) from E. coli to 17% of the soluble cell protein. A novel purification procedure, using dye-affinity chromatography, allows purification of SAT to homogeneity. The enzyme has been crystallised from polyethylene glycol, in the presence of L-cysteine (an inhibitor of SAT). The crystals which diffract to beyond 3.0 A resolution are of the tetragonal spacegroup P4(1)2(1)2 (or P4(3)2(1)2) with cell dimensions a = b = 123 A, c = 79 A. Since ultracentrifugation and gel-filtration experiment indicate that purified SAT is a tetramer, there appears to be one-half tetramer in the asymmetric unit (Vm = 2.55 A3/Da).  相似文献   

3.
Magalhaes ML  Blanchard JS 《Biochemistry》2005,44(49):16275-16283
The aminoglycoside 3-N-acetyltransferase AAC(3)-IV from Escherichia coli exhibits a very broad aminoglycoside specificity, causing resistance to a large number of aminoglycosides, including the atypical veterinary antibiotic, apramycin. We report here on the characterization of the substrate specificity and kinetic mechanism of the acetyl transfer reaction catalyzed by AAC(3)-IV. The steady-state kinetic parameters revealed a narrow specificity for the acyl-donor and broad range of activity for aminoglycosides. AAC(3)-IV has the broadest substrate specificity of all AAC(3)'s studied to date. Dead-end inhibition and ITC experiments revealed that AAC(3)-IV follows a sequential, random bi-bi kinetic mechanism. The analysis of the pH dependence of the kinetic parameters revealed acid- and base-assisted catalysis and the existence of three additional ionizable groups involved in substrate binding. The magnitude of the solvent kinetic isotope effects suggests that a chemical step is at least partially rate limiting in the overall reaction.  相似文献   

4.
Incubation of serine acetyltransferase (SAT) from Escherichia coli at 25 degrees C in the absence of protease inhibitors yielded a truncated SAT. The truncated SAT was much less sensitive to feedback inhibition than the wild-type SAT. Analyses of the N- and C-terminal amino acid sequences found that the truncated SAT designated as SAT delta C20 was a resultant form of the wild-type SAT cleaved between Ser 253 and Met 254, deleting 20 amino acid residues from the C-terminus. Based on these findings, we constructed a plasmid containing an altered cysE gene encoding the truncated SAT. SAT delta C20 was produced using the cells of E. coli JM70 transformed with the plasmid and purified to be homogeneous on an SDS-polyacrylamide gel. Properties of the purified SAT delta C20 were investigated in comparison with those of the wild-type SAT and Met-256-Ile mutant SAT, which was isolated by Denk and B?ck but not purified (J. Gen. Microbiol., 133, 515-525 (1987)). SAT delta C20 was composed of four identical subunits like the wild-type SAT and Met-256-Ile mutant SAT. Specific activity, optimum pH for reaction, thermal stability, and stability to reagents for SAT delta C20 were similar those for the wild-type SAT and Met-256-Ile mutant SAT. However, SAT delta C20 did not form a complex with O-acetylserine sulfhydrylase-A (OASS-A), a counterpart of the cysteine synthetase and did not reduce OASS activity in contrast to the wild-type SAT and Met-256-Ile mutant SAT.  相似文献   

5.
The protozoan parasite Entamoeba histolytica is the etiologic agent of amebiasis, a major global public health problem, particularly in developing countries. There is an effective anti-amoebic drug available, however its long term use produces undesirable side effects. As E. histolytica is a micro-aerophilic organism, it is sensitive to high levels of oxygen and the enzymes that are involved in protecting against oxygen-stress are crucial for its survival. Therefore serine acetyltransferase, an enzyme involved in cysteine biosynthesis, was used as a target for identifying potential inhibitors. Virtual screening with Escherichia coli serine acetyltransferase was carried out against the National Cancer Institute chemical database utilizing molecular docking tools such as GOLD and FlexX. The initial analysis yielded 11 molecules of which three compounds were procured and tested for biological activity. The results showed that these compounds partially block activity of the E. coli enzyme and the growth of E. histolytica trophozoites but not mammalian cells.  相似文献   

6.
Cysteine synthase from Escherichia coli is a bienzyme complex comprised of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase A. The site of interaction of a SAT molecule was investigated by gel chromatography and surface plasmon technique using various mutant-type SATs, to better understand the mechanism involved in complex formation. The C-terminus of SAT, Ile 273, along with Glu 268 and Asp 271, was found to be essential for complex formation. The effects of O-acetyl-L-serine and sulfide on the affinity for the complex formation were also studied using a surface plasmon technique.  相似文献   

7.
Some properties of serine acetyltransferases (SATs) from Escherichia coli, deleting 10-25 amino acid residues from the C-terminus (SATdeltaC10-deltaC25) were investigated. The specific activity depended only slightly on the length of the C-terminal region deleted. Although the sensitivity of SATdeltaC10 to inhibition by L-cysteine was similar to that for the wild-type SAT, it became less with further increases in the length of the amino acid residues deleted. SATdeltaC10 was inactivated on cooling to 0 degrees C and dissociated into dimers or trimers in the same manner as the wild-type SAT, but Met-256-le mutant SAT as well as SATdeltaC14, SATdeltaC20, and SATdeltaC25 were stable. Since SATdeltaC10, SATdeltaC14, and SATdeltaC25 did not form a complex with O-acetylserine sulfhydrylase-A (OASS-A) in a way similar to SATdeltaC20, it was indicated that 10 amino acid residues or fewer from the C-terminus of the wild-type SAT are responsible for the complex formation with OASS-A. The C-terminal peptide of the 10 amino acid residues interacted competitively with OASS-A with respect to OAS although its affinity was much lower than that for the wild-type SAT.  相似文献   

8.
Johnson CM  Huang B  Roderick SL  Cook PF 《Biochemistry》2004,43(49):15534-15539
The pH dependence of kinetic parameters was determined in both reaction directions to obtain information about the acid-base chemical mechanism of serine acetyltransferase from Haemophilus influenzae (HiSAT). The maximum rates in both reaction directions, as well as the V/K(serine) and V/K(OAS), decrease at low pH, exhibiting a pK of approximately 7 for a single enzyme residue that must be unprotonated for optimum activity. The pH-independent values of V(1)/E(t), V(1)/K(serine)E(t), V/K(AcCoA)E(t), V(2)/E(t), V(2)/K(OAS)E(t), and V/K(CoA)E(t) are 3300 +/- 180 s(-1), (9.6 +/- 0.4) x 10(5) M(-1) s(-1), 3.3 x 10(6) M(-1) s(-1), 420 +/- 50 s(-1), (2.1 +/- 0.5) x 10(4) M(-1) s(-1), and (4.2 +/- 0.7) x 10(5) M(-1) s(-1), respectively. The K(i) values for the competitive inhibitors glycine and l-cysteine are pH-independent. The solvent deuterium kinetic isotope effects on V and V/K in the direction of serine acetylation are 1.9 +/- 0.2 and 2.5 +/- 0.4, respectively, and the proton inventories are linear for both parameters. Data are consistent with a single proton in flight in the rate-limiting transition state. A general base catalytic mechanism is proposed for the serine acetyltransferase. Once acetyl-CoA and l-serine are bound, an enzymic general base accepts a proton from the l-serine side chain hydroxyl as it undergoes a nucleophilic attack on the carbonyl of acetyl-CoA. The same enzyme residue then functions as a general acid, donating a proton to the sulfur atom of CoASH as the tetrahedral intermediate collapses, generating the products OAS and CoASH. The rate-limiting step in the reaction at limiting l-serine levels is likely formation of the tetrahedral intermediate between serine and acetyl-CoA.  相似文献   

9.
The kinetic mechanism of serine acetyltransferase from Haemophilus influenzae was studied in both reaction directions. The enzyme catalyzes the conversion of acetyl CoA and L-serine to O-acetyl-L-serine (OAS) and coenzyme A (CoASH). In the direction of L-serine acetylation, an equilibrium ordered mechanism is assigned at pH 6.5. The initial velocity pattern in the absence of added inhibitors is best described by a series of lines converging on the ordinate when L-serine is varied at different fixed levels of acetyl CoA. The initial velocity pattern at pH 7.5 is also intersecting, but the lines are nearly parallel. Product inhibition by OAS is noncompetitive against acetyl CoA, while it is uncompetitive against L-serine. Product inhibition by L-serine in the reverse reaction direction is noncompetitive with respect to both OAS and CoASH. Glycine and S-methyl-L-cysteine (SMC) were used as dead-end analogs of L-serine and OAS, respectively. Glycine is competitive versus L-serine and uncompetitive versus acetyl CoA, while SMC is competitive against OAS and uncompetitive against CoASH. Desulfo-CoA was used as a dead-end analog of both acetyl CoA and CoASH, and is competitive versus both substrates in the direction of L-serine acetylation; while it is competitive against CoASH and noncompetitive against OAS in the direction of CoASH acetylation. All of the above kinetic parameters are consistent with those predicted for an ordered mechanism at pH 6.5 with the exception of the uncompetitive inhibition by OAS vs. serine. The latter inhibition pattern suggests combination of OAS with the central E:acetyl CoA:serine complex. Cysteine is known to regulate its own biosynthesis at the level of SAT. As a dead-end inhibitor, L-cysteine is competitive against both substrates in both reaction directions. These results are discussed in terms of the mechanism of regulation.  相似文献   

10.
The nucleotide sequence of a serine tRNA from Escherichia coli   总被引:10,自引:0,他引:10  
  相似文献   

11.
Two cDNAs encoding feedback inhibition-insensitive serine acetyltransferases of Arabidopsis thaliana were expressed in the chromosomal serine acetyltransferase-deficient and L-cysteine non-utilizing Escherichia coli strain JM39-8. The transformants produced 1600 to 1700 mg l(-1) of L-cysteine and L-cystine from glucose. The amount of these amino acids produced per cell was 30 to 60% higher than that of an E. coli strain carrying mutant serine acetyltransferase less sensitive to feedback inhibition.  相似文献   

12.
Cysteine synthetase from Escherichia coli is a bienzyme complex composed of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase-A (OASS). The effects of the complex formation on the stability of SAT against cold inactivation and proteolysis were investigated. SAT was reversibly inactivated on cooling to 0 degrees C. Ultracentrifugal analysis showed that SAT (a hexamer) was dissociated mostly into two trimers on cooling to 0 degrees C in the absence of OASS, while in the presence of OASS one trimer of the SAT subunits formed a complex with one dimer of OASS subunits. In the presence of OASS, not only the cold inactivation rate was reduced but also the reactivation rate was increased. Furthermore, SAT became stable against proteolytic attack by alpha-chymotrypsin and V8 protease by forming the complex with OASS. On the other hand, SAT was degraded by trypsin in the same manner both in the presence and in the absence of OASS. The different tendency in the stability against proteolysis with the different proteases was discussed with respect to the substrate specificity of the proteases and amino acid sequence of the C-terminal region of SAT that interacts with OASS.  相似文献   

13.
The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel.  相似文献   

14.
Equilibrium sedimentation studies show that the serine acetyltransferase (SAT) of Escherichia coli is a hexamer. The results of velocity sedimentation and quasi-elastic light scattering experiments suggest that the identical subunits are loosely packed and/or arranged in an ellipsoidal fashion. Chemical cross-linking studies indicate that the fundamental unit of quaternary structure is a trimer. The likelihood, therefore, is that in solution SAT exists as an open arrangement of paired trimers. Crystals of SAT have 32 symmetry, consistent with such an arrangement, and the cell density function is that expected for a hexamer. Electron microscopy with negative staining provides further evidence that SAT has an ellipsoidal subunit organization, the dimensions of the particles consistent with the proposed paired trimeric subunit arrangement. A bead model analysis supports the view that SAT has a low packing density and, furthermore, indicates that the monomers may have an ellipsoidal shape. Such a view is in keeping with the ellipsoidal subunit shape of trimeric LpxA, an acyltransferase with which SAT shares contiguous repeats of a hexapeptide motif.  相似文献   

15.
Kanamycin acetyltransferase acylates aminoglycoside antibiotics using acetyl-CoA, and thereby conveys bacterial resistance to several clinically important antibiotics, notably amikacin. The enzyme was quantitatively and reproducibly released from Escherichia coli W677 harboring plasmid pMH67 by a modified osmotic shock procedure (bacterial cells are incubated overnight in sucrose and again without sucrose before onset of osmotic shock). The enzyme was purified by dye-ligand chromatography on Affi-Gel Blue in addition to antibiotic affinity chromatography on neomycin-Sepharose-4B. The activity did not increase with subsequent chromatography on ion-exchange, hydrophobic, or molecular-exclusion gels. However, both dye-ligand and molecular-exclusion chromatography, as well as disc-gel electrophoresis, separated the purified enzyme equally into two active protein fractions. Based on the more active of the two forms, the purification was 112-fold with a specific activity of 1.9 IU/mg. The less-active form has an unusual absorbance spectrum, with a maximum near 255 nm, which cannot be explained by the amino acid composition. Chromatography of this form alone regenerated both forms, suggesting that the enzyme is noncovalently conjugated to an uncharged chromophore, such as a lipid. The purified enzyme has a very sharp pH optimum at 5.5 with a plateau on the alkaline side, but is most stable between pH 8.5 and 9.5. Data from electrophoresis in the presence of sodium dodecyl sulfate and gel-filtration on Ultrogel AcA 44 are consistent with a tetrameric protein of 60-70,000 Da.  相似文献   

16.
The primary structure of L-asparaginase from Escherichia coli   总被引:1,自引:0,他引:1  
The carboxymethylated L-asparaginase from Escherichia coli A-1--3 was fragmented with cyanogen bromide and the resulting peptides were isolated by using gel filtration on Sephadex G-50 and column chromatography on DE-52. The amino acid sequences of the 7 cyanogen bromide peptides thus obtained were established completely or partially by further fragmentation with trypsin, chymotrypsin and pepsin, and the Dansyl Edman method. Based on the above results and the complete sequences of the tryptic peptides from the carboxymethylated L-asparaginase reported in the previous paper, the whole sequence of the enzyme was established. The reported sequence consists of 321 amino acid residues and its calculated molecular weight is 34 080.  相似文献   

17.
18.
Escherichia coli 2,4-dienoyl-CoA reductase is an iron-sulfur flavoenzyme required for the metabolism of unsaturated fatty acids with double bonds at even carbon positions. The enzyme contains FMN, FAD, and a 4Fe-4S cluster and exhibits sequence homology to another iron-sulfur flavoprotein, trimethylamine dehydrogenase. It also requires NADPH as an electron source, resulting in reduction of the C4-C5 double bond of the acyl chain of the CoA thioester substrate. The structure presented here of a ternary complex of E. coli 2,4-dienoyl-CoA reductase with NADP+ and a fatty acyl-CoA substrate reveals a possible mechanism for substrate reduction and provides details of a plausible electron transfer mechanism involving both flavins and the iron-sulfur cluster. The reaction is initiated by hydride transfer from NADPH to FAD, which in turn transfers electrons, one at a time, to FMN via the 4Fe-4S cluster. In the final stages of the reaction, the fully reduced FMN provides a hydride ion to the C5 atom of substrate, and Tyr-166 and His-252 are proposed to form a catalytic dyad that protonates the C4 atom of the substrate and complete the reaction. Inspection of the substrate binding pocket explains the relative promiscuity of the enzyme, catalyzing reduction of both 2-trans,4-cis- and 2-trans,4-trans-dienoyl-CoA thioesters.  相似文献   

19.
A multi-step procedure has been developed for the purification of [acyl-carrier-protein] acetyltransferase from Escherichia coli, which allows the production of small amounts of homogeneous enzyme. The subunit Mr was estimated to be 29,000 and the native Mr was estimated to be 61,000, suggesting a homodimeric structure. The catalytic properties of the enzyme are consistent with a Bi Bi Ping Pong mechanism and the existence of an acetyl-enzyme intermediate in the catalytic cycle. The enzyme was inhibited by N-ethylmaleimide and more slowly by iodoacetamide in reactions protected by the substrate, acetyl-CoA. However, the enzyme was apparently only weakly inhibited by the thiol-specific reagent methyl methanethiosulphonate. The nature of the acetyl-enzyme intermediate is discussed in relationship to that found in other similar enzymes from E. coli, yeast and vertebrates.  相似文献   

20.
A type I chloramphenicol acetyltransferase from Escherichia coli has been crystallized as trigonal prisms, in a form suitable for diffraction studies. The space group is P31, or P32, cell dimensions a = b = 116.3, c = 147 A?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号