首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native tetrameric alpha 2-macroglobulin molecules (alpha 2M) can be converted into a population of dimers by incubation with various divalent cations such as Zn, Cd, Mg, Cu, Ni, Co. This dissociation is completed within 30 min at 37 degrees C. These dimers have a characteristic shape and a size of about 16 X 8 nm, and appear to be the half of the native alpha 2M molecule which has a clear tetrameric structure as seen in the electron microscope. At room temperature or below, dimers obtained with 5 to 100 mM Zn++ can reassociate in long linear polymers which display a regular chain-like arrangement and a helical periodicity. The structural characteristics of this polymer are described. The trypsin inhibitory capacity of Zn++-treated alpha 2M has been studied in an attempt to correlate its Zn++-induced conformational changes with its functional modifications.  相似文献   

2.
Protein kinase CK2 (formerly called: casein kinase 2) is a heterotetrameric enzyme composed of two separate catalytic chains (CK2alpha) and a stable dimer of two non-catalytic subunits (CK2beta). CK2alpha is a highly conserved member of the superfamily of eukaryotic protein kinases. The crystal structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two main regions of conformational plasticity and regulatory importance in eukaryotic protein kinases, in active conformations stabilized by extensive contacts to the N-terminal segment. This arrangement is in accordance with the constitutive activity of the enzyme. By structural superimposition of human CK2alpha in isolated form and embedded in the human CK2 holoenzyme the loop connecting the strands beta4 and beta5 and the ATP-binding loop were identified as elements of structural variability. This structural comparison suggests that the ATP-binding loop may be the key region by which the non-catalytic CK2beta dimer modulates the activity of CK2alpha. The beta4/beta5 loop was found in a closed conformation in contrast to the open conformation observed for the CK2alpha subunits of the CK2 holoenzyme. CK2alpha monomers with this closed beta4/beta5 loop conformation are unable to bind CK2beta dimers in the common way for sterical reasons, suggesting a mechanism to protect CK2alpha from integration into CK2 holoenzyme complexes. This observation is consistent with the growing evidence that CK2alpha monomers and CK2beta dimers can exist in vivo independently from the CK2 holoenzyme and may possess physiological roles of their own.  相似文献   

3.
We have shown here that the cytosolic bacterial chaperone SecB is a structural dimer of dimers that undergoes a dynamic equilibrium between dimer and tetramer in the native state. We demonstrated this equilibrium by mixing two tetrameric species of SecB that can be distinguished by size. We showed that the homotetrameric species exchanged dimers, because when the mixture was analyzed both by size exclusion chromatography and native polyacrylamide gel electrophoresis a third hybrid tetrameric species was detected. Furthermore, treatment of SecB with 5,5'-dithiobis-(2-nitrobenzoic acid), which modifies the sulfhydryl group on cysteines, caused irreversible dissociation to a dimer indicating that cysteine must be involved in the stabilizing interactions at the dimer interface. It is clear that the two dimer-dimer interfaces of the SecB tetramer are differentially stable. Dissociation at one interface allows for a dynamic dimer-tetramer equilibrium. Because only dimers were exchanged it is clear that the other interface between dimers is significantly more stable, otherwise oligomers should have formed with a random distribution of monomers.  相似文献   

4.
5.
We compared the physicochemical characteristics of alpha 2-macroglobulin (alpha 2M) monomers produced by limited reduction and carboxamidomethylation to those of the naturally occurring monomeric alpha-macroglobulin homologue rat alpha 1-inhibitor 3 (alpha 1 I3). Unlike alpha 1 I3, alpha 2 M monomers fail to inhibit proteolysis of the high molecular weight substrate hide powder azure by trypsin. In contrast to alpha 1 I3, which remains monomeric after reacting with proteinase, alpha 2 M monomers reassociate to higher molecular weight species (dimers, trimers, and tetramers) after reacting with proteinase. Reaction of alpha 2 M monomers at molar ratios of proteinase to alpha 2M monomers as low as 0.3:1 leads to extensive reassociation and is accompanied by complete bait-region and thiolester bond cleavage. During the reaction of alpha 2M monomers with proteinases, the proteinase binds to the reassociating alpha 2M subunits but is not inhibited. Of significance, all the bound proteinase was covalently linked to the reassociated alpha 2M species. Treatment of alpha 2M monomers with methylamine results in thiolester bond cleavage but minimal reassociation. Treatment of alpha 2M monomers with methylamine followed by proteinase results in complete bait-region cleavage and is accompanied by marked reassociation of alpha 2M monomers to higher molecular weight species. However, no proteinase is associated with these higher molecular weight forms. We infer that bait-region cleavage is more important than thiolester bond cleavage in driving alpha 2M monomers to reassociate. Despite many similarities between alpha 1I3 and alpha 2M monomers, significant differences must exist with respect to proteinase orientation within the inhibitor to account for the failure of alpha 2M monomers to protect large molecular weight substrates from proteolysis by bound proteinase, in contrast to the naturally occurring monomeric homologue rat alpha 1 I3.  相似文献   

6.
X-ray intensity data from the native orthorhombic crystals of peanut lectin have been collected using oscillation photography. Rotation function studies using data up to a resolution of 4.5 A indicate that the four subunits in the molecule, which constitute the asymmetric unit in the crystals, are related to one another by three mutually perpendicular noncrystallographic 2-fold axes. Chemical cross-linking experiments in solution followed by sodium dodecyl sulfate gel electrophoresis, carried out in parallel, suggest that there is more than one type of intersubunit approach in the molecule. Rotation function and cross-linking studies thus show that the tetrameric molecule of peanut lectin is a dimer of a dimer. The two monomers in a dimer are related by a 2-fold axis. The two dimers are in turn related by another 2-fold axis perpendicular to the one that relates the two monomers in the dimer, endowing the molecule with 222 (D2) symmetry.  相似文献   

7.
Ramjeesingh M  Li C  Huan LJ  Garami E  Wang Y  Bear CE 《Biochemistry》2000,39(45):13838-13847
The chloride channel ClC-2 is thought to be essential for chloride homeostasis in neurons and critical for chloride secretion by the developing respiratory tract. In the present work, we investigated the quaternary structure of ClC-2 required to mediate chloride conduction. We found using chemical cross-linking and a novel PAGE system that tagged ClC-2 expressed in Sf9 cells exists as oligomers. Fusion of membranes from Sf9 cells expressing this protein confers double-barreled channel activity, with each pore exhibiting a unitary conductance of 32 pS. Polyhistidine-tagged ClC-2 from Sf9 cells can be purified as monomers, dimers, and tetramers. Purified, reconstituted ClC-2 monomers do not possess channel function whereas both purified ClC-2 dimers and tetramers do mediate chloride flux. In planar bilayers, reconstitution of dimeric ClC-2 leads to the appearance of a single, anion selective 32 pS pore, and tetrameric ClC-2 confers double-barreled channel activity similar to that observed in Sf9 membranes. These reconstitution studies suggest that a ClC-2 dimer is the minimum functional structure and that ClC-2 tetramers likely mediate double-barreled channel function.  相似文献   

8.
A high-Mr (Mr 750,000) alpha 1-macroglobulin, obtained from Salamandra salamandra, is described. Salamander alpha 1-macroglobulin is composed of two monomers of equal Mr, which are composed of two polypeptide chains, each of Mr 180,000, linked by disulfide bonds. The molecular parameters of this protein, its binding to trypsin and inactivation by methylamine suggest that salamander alpha 1-macroglobulin is closely related to human alpha 2-macroglobulin and to other related proteins described in the animal kingdom.  相似文献   

9.
The human alpha(2)-macroglobulin gene is approximately 48 kb in size and consists of 36 exons, which encode the 180 kDa subunit of this large tetrameric protein. In this investigation, a procedure of sequencing human alpha(2)-macroglobulin mRNA, using mRNA from lipopolysaccharide-stimulated peripheral blood mononuclear cells as template in RT-PCR, was developed. Incubation of peripheral blood mononuclear cell populations with lipopolysaccharide induced alpha(2)-macroglobulin mRNA expression reaching levels detectable by RT-PCR. Extracted human alpha(2)-macroglobulin mRNA was used to determine the nucleotide sequence of a 500 bp DNA segment encoding the most C-terminal, receptor-binding part of the protein, using alpha(2)-macroglobulin specific primers. The sequence obtained matched the earlier published sequence of human alpha(2)-macroglobulin, except for three point mutations, i.e., cytosine for guanine, cytosine for thymidine and thymidine for adenine substitutions at positions 4369, 4423, and 4511, respectively. None of these alterations, however, affect the amino acid sequence of the protein. In conclusion, we demonstrate a new, improved, approach to sequence human alpha(2)-macroglobulin mRNA by overexpressing the protein in peripheral blood mononuclear cells. This procedure may be useful in the search for mutations in alpha(2)-macroglobulin, examining its role in the pathogenesis of human diseases.  相似文献   

10.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

11.
The inhibitory capacity of the alpha-macroglobulins resides in their ability to entrap proteinase molecules and thereby hinder the access of high molecular weight substrates to the proteinase active site. This ability is thought to require at least two alpha-macroglobulin subunits, yet the monomeric alpha-macroglobulin rat alpha 1-inhibitor-3 (alpha 1I3) also inhibits proteinases. We have compared the inhibitory activity of alpha 1I3 with the tetrameric human homolog alpha 2-macroglobulin (alpha 2M), the best known alpha-macroglobulin, in order to determine whether these inhibitors share a common mechanism. alpha 1I3, like human alpha 2M, prevented a wide variety of proteinases from hydrolyzing a high molecular weight substrate but allowed hydrolysis of small substrates. In contrast to human alpha 2M, however, the binding and inhibition of proteinases was dependent on the ability of alpha 1I3 to form covalent cross-links to proteinase lysine residues. Low concentrations of proteinase caused a small amount of dimerization of alpha 1I3, but no difference in inhibition or receptor binding was detected between purified dimers or monomers. Kininogen domains of 22 and 64 kDa were allowed to react with alpha 1I3- or alpha 2M-bound papain to probe the accessibility of the active site of this proteinase. alpha 2M-bound papain was completely protected from reaction with these domains, whereas alpha 1I3-bound papain reacted with them but with affinities several times weaker than uncomplexed papain. Cathepsin G and papain antisera reacted very poorly with the enzymes when they were bound by alpha 1I3, but the protection provided by human alpha 2M was slightly better than the protection offered by the monomeric rat alpha 1I3. Our data indicate that the inhibitory unit of alpha 1I3 is a monomer and that this protein, like the multimeric alpha-macroglobulins, inhibits proteinases by steric hindrance. However, binding of proteinases by alpha 1I3 is dependent on covalent crosslinks, and bound proteinases are more accessible, and therefore less well inhibited, than when bound by the tetrameric homolog alpha 2M. Oligomerization of alpha-macroglobulin subunits during the evolution of this protein family has seemingly resulted in a more efficient inhibitor, and we speculate that alpha 1I3 is analogous to an evolutionary precursor of the tetrameric members of the family exemplified by human alpha 2M.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) and HIV-2 proteases are dimers of identical subunits. We made a construct for the expression of recombinant one-chain HIV-2 protease dimer, which, like the previously described one-chain HIV-1 protease dimer, is fully active. The constructs for the one-chain dimers of HIV-1 and HIV-2 proteases were modified to produce hybrid one-chain dimers consisting of both HIV-1 and HIV-2 protease monomers. Although the monomers share only 47.5% sequence identity, the hybrid one-chain dimers are fully active, suggesting that the folding of both HIV-1 and HIV-2 protease monomers is functionally similar.  相似文献   

13.
Human alpha 2-macroglobulin (alpha 2M), a large tetrameric plasma glycoprotein, inhibits a wide spectrum of proteinases by a particular "trapping" mechanism resulting from the proteolysis of peptide bonds at specific "bait" regions. This induces the hydrolysis of four thiol esters triggering both the possible covalent bonding of the proteinases and a considerable structural change in the alpha 2M molecule, also observed following direct cleavage of the thiol esters by methylamine. By subtracting average images of electron micrographs from two populations of alpha 2M molecules in the same biochemical state (with both the four cleaved bait regions and thiol esters), but containing either two or zero chymotrypsins, we are able to demonstrate the position of the two proteinases inside the tetrameric alpha 2M molecule. The comparison of the alpha 2M molecules transformed either by immobilized chymotrypsin or methylamine shows that the proteolysis of the bait regions seems of minimal importance for the general shape of the molecule and provides a direct visualization of the actual role of the thiol esters in the conformational change.  相似文献   

14.
Alpha 2-macroglobulin (alpha 2M) is a plasma inhibitor of proteinases, the steric mechanism of which is based on a considerable conformational change. The typical and distinct H-like shape of alpha 2M-chymotrypsin (alpha 2M-chy) complexes seen by electron microscopy led us to an ultrastructural study of the binding of a monoclonal antibody (Mab) specific for this conformation of alpha 2M. The epitope of this Mab is located near the extremities of the 4 arms of the H-like alpha 2M-chy, at a site that is not accessible on the native molecule. The identical binding of the Mab on the 4 arms of the tetrameric molecule demonstrates that these arms are equivalent portions of the 4 monomers. Various types of immune complexes between alpha 2M and IgG are described, and images of individual immune complexes were processed by correspondence analysis. This extracts new information concerning the organization of chymotrypsin-transformed alpha 2M. The molecule appears asymmetrical, presents 2 conformational states (which we describe as relaxed and twisted), and has flexible arms. These intramolecular motions are supposed to be related to IgG binding. The results are discussed in comparison with previously published models of proteinase-transformed alpha 2M.  相似文献   

15.
The relationship between various amyloidoses and chaperones is gathering attention. In patients with dialysis-related amyloidosis, α(2)-macroglobulin (α2M), an extracellular chaperone, forms a complex with β(2)-microglobulin (β2-m), a major component of amyloid fibrils, but the molecular mechanisms and biological implications of the complex formation remain unclear. Here, we found that α2M substoichiometrically inhibited the β2-m fibril formation at a neutral pH in the presence of SDS, a model for anionic lipids. Binding analysis showed that the binding affinity between α2M and β2-m in the presence of SDS was higher than that in the absence of SDS. Importantly, SDS dissociated tetrameric α2M into dimers with increased surface hydrophobicity. Western blot analysis revealed that both tetrameric and dimeric α2M interacted with SDS-denatured β2-m. At a physiologically relevant acidic pH and in the presence of heparin, α2M was also dissociated into dimers, and both tetrameric and dimeric α2M interacted with β2-m, resulting in the inhibition of fibril growth reaction. These results suggest that under conditions where native β2-m is denatured, tetrameric α2M is also converted to dimeric form with exposed hydrophobic surfaces to favor the hydrophobic interaction with denatured β2-m, thus dimeric α2M as well as tetrameric α2M may play an important role in controlling β2-m amyloid fibril formation.  相似文献   

16.
Human mitochondrial glutaredoxin 2 (GLRX2), which controls intracellular redox balance and apoptosis, exists in a dynamic equilibrium of enzymatically active monomers and quiescent dimers. Crystal structures of both monomeric and dimeric forms of human GLRX2 reveal a distinct glutathione binding mode and show a 2Fe-2S-bridged dimer. The iron-sulfur cluster is coordinated through the N-terminal active site cysteine, Cys-37, and reduced glutathione. The structures indicate that the enzyme can be inhibited by a high GSH/GSSG ratio either by forming a 2Fe-2S-bridged dimer that locks away the N-terminal active site cysteine or by binding non-covalently and blocking the active site as seen in the monomer. The properties that permit GLRX2, and not other glutaredoxins, to form an iron-sulfur-containing dimer are likely due to the proline-to-serine substitution in the active site motif, allowing the main chain more flexibility in this area and providing polar interaction with the stabilizing glutathione. This appears to be a novel use of an iron-sulfur cluster in which binding of the cluster inactivates the protein by sequestering active site residues and where loss of the cluster through changes in subcellular redox status creates a catalytically active protein. Under oxidizing conditions, the dimers would readily separate into iron-free active monomers, providing a structural explanation for glutaredoxin activation under oxidative stress.  相似文献   

17.
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c′ from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four‐helix bundle structure containing a covalently bound five‐coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer–monomer transition according to the absence and presence of CO. Herein, domain‐swapped dimeric AVCP was constructed and utilized to form a tetramer and high‐order oligomers. The X‐ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain‐swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain‐swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit–subunit interactions at the interfaces of the domain‐swapped dimer and monomer subunits in the tetramer were also similar to the subunit–subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain‐swapped dimer and two monomers upon CO binding. Without monomers, the domain‐swapped dimers formed tetramers, hexamers, and higher‐order oligomers in the absence of CO, whereas the oligomers dissociated to domain‐swapped dimers in the presence of CO, demonstrating that the domain‐swapped dimer maintains the CO‐induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer–monomer transition protein.  相似文献   

18.
Dissociation of alpha beta and alpha gamma dimers of human hemoglobins (Hb) A and F into monomers was studied by alpha chain exchange (Shaeffer, J. R., McDonald, M. J., Turci, S. M., Dinda, D. M., and Bunn, H. F. (1984) J. Biol. Chem. 259, 14544-14547). Unlabeled carbonmonoxy-Hb A was incubated with trace amounts of preparatively purified, native, 3H-alpha subunits in 10 mM sodium phosphate, pH 7.0, at 25 degrees C. At appropriate times, free alpha monomers were separated from Hb A tetramers by anion exchange high performance liquid chromatography. Transfer of radioactivity from the alpha chain pool into Hb A was measured, yielding a first order dimer dissociation rate constant, k2 = (3.2 +/- 0.3) X 10(-3) h-1. The Arrhenius plot of k2 was linear between 7 and 37 degrees C, yielding an enthalpy of activation of 23 kcal/alpha beta dimer. As the chloride concentration was raised from 0 to 0.2 M, the dissociation rate increased 3-fold; with higher salt concentrations, however, the rate gradually returned to baseline. This rate was not altered by raising the pH from 6.5 to 7.2, but as pH was further raised to 8.4, kappa 2 increased about 3-fold. Hb F, which has an increased stability at alkaline pH, dissociated into alpha and gamma monomers 3 times more slowly than Hb A. Moreover, the dimer-monomer dissociation of Hb F was characterized by a significantly reduced pH dependence. These results demonstrate that both alpha beta and alpha gamma dimers of Hb A and Hb F dissociate reversibly into monomers under physiologic conditions. The differential pH dependence for dimer dissociation between Hb A and Hb F suggests that specific amino acid replacement at the alpha 1 gamma 1 interface confers increased resistance to alkaline denaturation.  相似文献   

19.
Acetylcholine receptors from Torpedo californica electric organ were solubilized and purified under conditions which prevent inactivation of the agonist-regulated cation channels. The dimer form of the receptors was preserved during purification. Treatment with reducing agents converted dimers into monomers. Receptor monomers and dimers were separately reconstituted into soybean lipid vesicles by the cholate dialysis technique. Reconstituted monomers and dimers were functionally equivalent with respect to their carbamylcholine-induced dose-dependent uptake of 22Na+, the total flux of 22Na+ per receptor during the permeability response, and the occurrence of desensitization. Evidence against non-covalent association of monomers to produce dimeric functional units was obtained using glutaraldehyde as a crosslinking agent. These results show that both the acetylcholine-binding sites and the agonist-regulated cation-specific channel are contained within the alpha 2 beta gamma delta subunit structure of the acetylcholine receptor monomer.  相似文献   

20.
Alpha-macroglobulin inhibits a broad spectrum of proteinases by forming macromolecular cages inside which proteinases are cross-linked and trapped. Upon formation of a complex with proteinase, alpha-macroglobulin undergoes a large conformational change that results in the exposure of its receptor-binding domain (RBD). Engagement of this domain by alpha-macroglobulin receptor permits clearance of the alpha-macroglobulin: proteinase complex from circulation. The crystal structure of rat alpha1-macroglobulin RBD has been determined at 2.3 A resolution. The RBD is composed of a nine-stranded beta-sandwich and a single alpha-helix that has been implicated as part of the receptor binding site and that lies on the surface of the beta-sandwich. The crystallographic asymmetric unit contains a dimer of RBDs related by approximate twofold symmetry such that the putative receptor recognition sites of the two monomers are contiguous. By gel filtration and ultracentrifugation, it is shown that RBD dimers form in solution with a dissociation constant of approximately 50 microM. The structure of the RBD dimer might mimic a conformation of transformed alpha-macroglobulin in which the proposed receptor binding residues are exposed on one face of the dimer. A pair of phenylalanine residues replaces a cystine that is conserved in other members of the macroglobulin family. These residues participate in a network of aromatic side-chain interactions that appears to stabilize the dimer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号