首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kurasová  I.  Čajánek  M.  Kalina  J.  Špunda  V. 《Photosynthetica》2000,38(4):513-519
The adaptation of barley (Hordeum vulgare L. cv. Akcent) plants to low (LI, 50 µmol m–2 s–1) and high (HI, 1000 µmol m–2 s–1) growth irradiances was studied using the simultaneous measurements of the photosynthetic oxygen evolution and chlorophyll a (Chl a) fluorescence at room temperature. If measured under ambient CO2 concentration, neither increase of the oxygen evolution rate (P) nor enhancement of non-radiative dissipation of the absorbed excitation energy within photosystem 2 (PS2) (determined as non-photochemical quenching of Chl a fluorescence, NPQ) were observed for HI plants compared with LI plants. Nevertheless, the HI plants exhibited a significantly higher proportion of QA in oxidised state (estimated from photochemical quenching of Chl a fluorescence, qP), by 49–102 % at irradiances above 200 µmol m–2 s–1 and an about 1.5 fold increase of irradiance-saturated PS2 electron transport rate (ETR) as compared to LI plants. At high CO2 concentration the degree of P stimulation was approximately three times higher for HI than for LI plants, and the irradiance-saturated P values at irradiances of 2 440 and 2 900 µmol m–2 s–1 were by 130 and 150 % higher for HI plants than for LI plants. We suggest that non-assimilatory electron transport dominates in the adaptation of the photosynthetic apparatus of barley grown at high irradiances under ambient CO2 rather than an increased NPQ or an enhancement of irradiance-saturated photosynthesis.  相似文献   

2.
Sailaja  M.V.  Das  V.S. Rama 《Photosynthetica》2000,38(2):267-273
Photosynthetic acclimation to reduced growth irradiances (650 and 200 µmol m–2 s–1) in Eleusine coracana (L.) Garten, a nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) C4 species and Gomphrena globosa L., a nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) C4 species were investigated. E. coracana plants acclimated in 4 and 8 d to 650 and 200 µmol m–2 s–1, respectively, whereas G. globosa plants took 8 and 10 d, respectively, to acclimate to the same irradiances. The acclimation to reduced irradiance was achieved in both species by greater partitioning of chlorophyll towards the light-harvesting antennae at the expense of functional components. However, magnitude of increase in the light-harvesting antenna was higher in E. coracana as compared to G. globosa. Superior photosynthetic acclimation to reduced irradiance in G. globosa was due to the smaller change in functions of the cytochrome b 6/f complex, photosystem (PS) 1 and PS2 leading to the higher carbon fixation rates compared to E. coracana.  相似文献   

3.
Genoud  C.  Sallanon  H.  Hitmi  A.  Maziere  Y.  Coudret  A. 《Photosynthetica》2000,38(4):629-634
The rooting of shoots of micropropagated Rosa hybrida cv. Madame Delbard was conducted on MS medium with 30 kg m–3 sucrose or on hydroponic medium (containing less mineral salts), under higher photosynthetic photon flux density (PPFD) (100 in comparison with 45 µmol m–2 s–1) and flushed by ambient air [AC, 340 µmol(CO2) mol–1] or by CO2-enriched air (EC, 2 500 µmol mol–1) and lower relative humidity (80–90 % vs. 96–99 %). This cultivation led to plantlets with longer roots and adventitious root formation. Net photosynthetic rate and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities, RuBPCO/phosphoenolpyruvate carboxylase activities ratio, and starch accumulation increased under these conditions. After 14 d, plantlets had functional stomata and could be acclimated on open benches without gradual decrease in relative humidity. The percentage of survival was higher when the rooting took place in EC than in AC. However, the advantage acquired during rooting phase by plantlets cultured in liquid medium was not maintained after 4 weeks of acclimatisation.  相似文献   

4.
Two clones of Hevea brasiliensis (RRII 105 and PB 235) were grown for one year in two distinct agroclimatic locations (warmer and colder, W and C) in peninsular India. We simultaneously measured gas exchange and chlorophyll (Chl) fluorescence on fully mature intact leaves at different photosynthetic photon flux densities (PPFDs) and ambient CO2 concentrations (C a) and at constant ambient O2 concentration (21 %). Net photosynthetic rate (P N), apparent quantum yield for CO2 assimilation (Φc), in vivo carboxylation efficiency (CE), and photosystem 2 quantum yield (ΦPS2) were low in plants grown in C climate and these reductions were more predominant in RRII 105 than in PB 235 which was also reflected in their growth. We estimated in these clones the partitioning of photosynthetic electrons between CO2 reduction (JA) and processes other than CO2 reduction (J*) at low and high PPFDs and C a. At high C a (700 µmol mol−1) most of the photosynthetic electrons were used for CO2 assimilation and negligible amount went for other processes when PPFD was low (200–300 µmol m−2 s−1) both in the C and W climates. But at high PPFD (900-1 100 µmol m−2 s−1), J* was appreciably high even at a high C a. Hence at normal ambient C a and high irradiance, electrons can be generated in the photosynthetic apparatus far in excess of what can be safely utilised for photosynthetic CO2 reduction. However, at high C a there was increased diversion of electrons to photosynthetic CO2 reduction which resulted in improved photosynthetic parameters even in plants grown in C climate.  相似文献   

5.
Marek  M.V.  Šprtová  M.  Urban  O.  Špunda  V. 《Photosynthetica》2001,39(3):437-445
The long-term impact of elevated CO2 concentration on photosynthetic activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Picea abies stand (age 12 years) after three years of cultivation in adjustable-lamella-domes (ALD). One ALD is supplied with either ambient air [ca. 350 µmol(CO2) mol–1; AC-variant) and the second with elevated CO2 concentration [ambient plus 350 µmol(CO2) mol–1; EC-variant). The pronounced vertical profile of the photosynthetically active radiation (PAR) led to the typical differentiation of the photosynthetic apparatus between the S- and E-needles in the AC-variant estimated from the irradiance-responses of various parameters of the room temperature chlorophyll (Chl) a fluorescence parameters. Namely, electron transport rate (ETR), photochemical efficiency of photosystem 2, PS2 (PS2), irradiance-saturated values of non-photochemical quenching of minimum (SV0) and maximum (NPQ) fluorescence levels, and photochemical fluorescence quenching (qp) at higher irradiances were all significantly higher for E-needles as compared with the S-ones. The prolonged exposure to EC did not cause any stimulation of ETR for the E-needles but a strongly positive effect of EC on ETR was observed for the S-needles resulting in more than doubled ETR capacity in comparison with S-needles from the AC-variant. For the E-needles in EC-variant a slightly steeper reduction of the PS2 and qp occurred with the increasing irradiance as compared to the E-needles of AC-variant. On the contrary, the S-needles in EC variant revealed a significantly greater capacity to maintain a high PS2 at irradiances lower than 200 µmol m–2 s–1 and to prevent the over-reduction of the PS2 reaction centres. Moreover, compared to the AC-variant the relation between SV0 and NPQ exhibited a strong decrease (up to 72 %) of the SV0-NPQ slope for the E-needles and an increase (up to 76 %) of this value for the S-needles. Hence the E- and S-foliage responded differently to the long-term impact of EC. Moreover, this exposure was responsible for the smoothing of the PAR utilisation vertical gradient in PS2 photochemical and non-photochemical reactions within the canopy.  相似文献   

6.
The photosynthetic behaviour of Dunaliella parva Lerche from the athalassic lagoon of Fuente de Piedra (Málaga, Southern Spain) was studied experimentally at three NaCl concentrations (1, 2 and 3 M), five temperatures (15, 23, 31, 38 and 42°C) and nine different irradiances between 82 and 891 mol m–2 s–1. Results are analyzed to define the best growing conditions for the algae. D. parva shows the highest photosynthetic rates at a NaCl molarity of 2 M, under a moderate light intensity (600 mol m–2 s–1) at 31°C. Above this light intensity a clear photoinhibition of the photosynthesis was found at 2 M and 3 M of NaCl. D. parva is a halotolerant and a thermoresistant species as evidenced by its net photosynthesis rate and positive values of oxygen evolution at 42°C.Two methods for modelling photosynthesis vs. irradiance curves are discussed. The first is a single model, based on third-order polynomial equations, and the second is double model, based on hyperbolical Michaelis-Menten type functions and negative exponential to define photoinhibition.  相似文献   

7.
The ingestion of two size classes of natural particulate matter (PM) and the uptake of the associated nitrogen by four species of scleractinian corals was measured using the stable isotopic tracer 15N. PM collected in sediment traps was split into <63 and >105 µm size fractions and labeled with (15N-NH4)2SO4. Siderastrea radians, Montastrea franksi, Diploria strigosa, and Madracis mirabilis were incubated in flow chambers with the labeled PM in suspension (<63 µm), or deposited onto coral surfaces (>105 µm). Ingestion was detected for all four species (98–600 µg Dry wt. cm–2 h–1), but only for D. strigosa was any difference detected between suspended and deposited PM. Only the three mounding species, S. radians, M. franksi, and D. strigosa showed uptake of suspended and deposited particulate nitrogen (PN); whereas, the branched coral M. mirabilis had no measurable PN uptake. Only coral host tissues were enriched with 15N, with no tracer detected in the symbiotic zooxanthellae. Uptake rates ranged from as low as 0.80 µg PN cm–2 h–1 in S. radians to as high as 13 µg PN cm–2 h–1 in M. franksi. M. franksi had significantly higher uptake rates than S. radians (ANOVA, p<0.05), while D. strigosa had a statistically similar uptake rate compared to both species. These results are the first to compare scleractinian ingestion of nitrogen associated with suspended and deposited particulate matter, and demonstrate that the use of PM as a nitrogen source varies with species and colony morphology.  相似文献   

8.
Kinetics of nitrate uptake by freshwater algae   总被引:2,自引:2,他引:0  
The kinetics of nitrate (NO3 ) uptake, the maximum uptake velocity (Vm) and the half-saturation constant (Ks), were determined for 18 species of batch-cultured freshwater algae grown without nitrogen limitation. Values of Ks ranged from 0.25 to 6.94 µM l–1 Chlorella pyrenoidosa Chick, and Navicula pelliculosa (Breb.) Hilse, respectively. Values of Vm ranged from 0.51 to 5.07 µM l–1 h–1 for Anabaena A7214 and Nitzschia W-32 O'Kelley, respectively. The mean positive values of Ks for Chlorophyta, Cyanophyta and Chrysophyta were 1.89, 3.67 and 4.07 µM l–1, respectively. The mean values of Vm for the same phyla were 1.61, 1.02 and 2.97 µM l–1 h–1 105 cells–1, respectively. The ranges of these kinetic parameters encompass values of kinetic parameters for marine and freshwater species in batch culture, for freshwater algae grown in N-limited chemostats and for natural populations of freshwater phytoplankton. Thus, in spite of variability between species, uptake parameters for both marine and freshwater algae are identical.  相似文献   

9.
Bunce  J.A. 《Photosynthetica》2000,38(1):83-89
Leaves developed at high irradiance (I) often have higher photosynthetic capacity than those developed at low I, while leaves developed at elevated CO2 concentration [CO2] often have reduced photosynthetic capacity compared with leaves developed at lower [CO2]. Because both high I and elevated [CO2] stimulate photosynthesis of developing leaves, their contrasting effects on photosynthetic capacity at maturity suggest that the extra photosynthate may be utilized differently depending on whether I or [CO2] stimulates photosynthesis. These experiments were designed to test whether relationships between photosynthetic income and the net accumulation of soluble protein in developing leaves, or relationships between soluble protein and photosynthetic capacity at full expansion differed depending on whether I or [CO2] was varied during leaf development. Soybean plants were grown initially with a photosynthetic photon flux density (PPFD) of 950 µmol m–2 s–1 and 350 µmol [CO2] mol–1, then exposed to [CO2] ranging from 135 to 1400 µmol mol–1 for the last 3 d of expansion of third trifoliolate leaves. These results were compared with experiments in which I was varied at a constant [CO2] of 350 µmol mol–1 over the same developmental period. Increases in area and dry mass over the 3 d were determined along with daily photosynthesis and respiration. Photosynthetic CO2 exchange characteristics and soluble protein content of leaves were determined at the end of the treatment periods. The increase in leaflet mass was about 28 % of the dry mass income from photosynthesis minus respiration, regardless of whether [CO2] or I was varied, except that very low I or [CO2] increased this percentage. Leaflet soluble protein per unit of area at full expansion had the same positive linear relationship to photosynthetic income whether [CO2] or I was varied. For variation in I, photosynthetic capacity varied directly with soluble protein per unit area. This was not the case for variation in [CO2]. Increasing [CO2] reduced photosynthetic capacity per unit of soluble protein by up to a factor of 2.5, and photosynthetic capacity exhibited an optimum with respect to growth [CO2]. Thus CO2 did not alter the relationship between photosynthetic income and the utilization of photosynthate in the net accumulation of soluble protein, but did alter the relationship between soluble protein content and photosynthetic characteristics in this species.  相似文献   

10.
Marek  M.V.  Urban  O.  Šprtová  M.  Pokorný  R.  Rosová  Z.  Kulhavý  J. 《Photosynthetica》2002,40(2):259-267
The long-term impact of elevated concentration of CO2 on assimilation activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Norway spruce stand [Picea abies (L.) Karst, age 14 years] after three years of cultivation in two domes with adjustable windows (DAW). One DAW was supplied with ambient air [AC, ca. 350 µmol(CO2) mol–1) and the second with elevated CO2 concentration [EC = AC plus 350 µmol(CO2) mol–1]. The pronounced vertical profile of the photosynthetic photon flux density (PPFD) led to the typical differentiation of the photosynthetic apparatus between the shaded and sun needles. Namely, photon-saturated values of maximal net photosynthetic rate (P Nmax) and apparent quantum yield () were significantly higher/lower for E-needles as compared with the S-ones. The prolonged exposure to EC was responsible for the apparent assimilatory activity stimulation observed mainly in deeply shaded needles. The degree of this stimulation decreases in the order: S-needles dense part > S-needles sparse part > E-needles dense part > E-needles sparse part. In exposed needles some signals on a manifestation of the acclimation depression of the photosynthetic activity were found. The long-term effect of EC was responsible for the decrease of nitrogen content of needles and for its smoother gradient between E- and S-needles. The obtained results indicate that the E- and S-foliage respond differently to the long-term impact of EC.  相似文献   

11.
Urban  O.  Pokorný  R.  Kalina  J.  Marek  M.V. 《Photosynthetica》2003,41(1):69-75
Twelve-year-old Norway spruce (Picea abies [L.] Karst.) were exposed to ambient (AC) or elevated (EC) [ambient + 350 mol(CO2) mol–1] CO2 concentration [CO2] using the facilities of open-top-chambers (OTCs) and glass domes (GDs). A combination of gas exchange measurements and application of a biochemical model of photosynthesis were used for the evaluation of CO2 assimilation characteristics. Morphological change was assessed on the base of specific leaf area (SLA). Nitrogen (N) content in the assimilation apparatus was considered a main factor influencing the biochemical capacity. Three experiments confirm the hypothesis that an adjustment of photosynthetic capacity under EC is controlled by the combination of biochemical, morphological, and physiological feedback mechanisms. We observed periodicity of down-regulation of photosynthetic capacity (Experiment No. 1) during the vegetation seasons. In the spring months (May–June), i.e. during the occurrence of active carbon sink associated with the formation of new foliage, up-regulation (10–35 %) of photosynthetic capacity (P Nsat) was observed. On the contrary, in the autumn months (September–October) down-regulation (25–35 %) of P Nsat was recorded that was mainly associated with reduced carbon sink strength and biochemical change, i.e. decrease of N status (up to 32 %) and accumulation of saccharides (up to 72 %) in leaves. Different adjustments of photosynthetic activities were observed in current (C) and one-year-old (C-1) needles exposed to EC (Experiment No. 2). Strong down-regulation of P Nsat and the diminution of the initial stimulation of photosynthetic rate (P Nmax) was associated with decreases of both ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity (by 32 %) and RuBP regeneration (by 40 %). This performance was tightly correlated with the absence of active carbon sinks, decrease of N content, and starch accumulation in C-1 needles. Finally, different responses of sun- and shade-adapted needles to EC (Experiment No. 3) were associated with the balance between morphological and biochemical changes. Observed P Nsat down-regulation (by 22 %) of exposed needles in EC was predominantly caused by effects of both higher assimilate accumulation and stronger N dilution, resulting from higher absolute photosynthetic rates and incident irradiances in the upper canopy.  相似文献   

12.
Nodal explants of Annona squamosa L. and Annona muricata L. were cultured in vitro under various types of ventilation: airtight vessel (sealed condition; number of air exchange 0.1 h–1), natural ventilation (via a polypropylene membrane; number of air exchange 1.5 h–1), and forced ventilation (5.0 cm3 min–1 in a 60 cm3 vessel; number of air exchange 5.0 h–1). In both species, numbers of leaves, leaf areas and numbers of nodes per shoot increased with improving standards of ventilation, while leaf abscissions were substantially reduced; all the leaves had abscised in the airtight vessels after 12–15 days, but none had done so with forced ventilation. Flower-bud abscission in A. muricatashowed a similar trend after 21 days. These effects were associated with reductions in the accumulation of ethylene within the culture vessels, produced by increasing the efficiency of ventilation; ethylene was not detected in those fitted with a forced ventilation system. CO2 concentrations in culture headspaces and the net photosynthetic rates of the plantlets were also evaluated. CO2 concentrations decreased well below the ambient in the natural and airtight vessels; however, under forced ventilation, CO2 concentrations were significantly higher during the photoperiod, compared to those of the natural ventilation and airtight vessel treatments. In general, net photosynthetic rates per unit leaf area increased with increasing photosynthetic photon flux (PPF) and rates were highest in plantlets grown under forced ventilation, intermediate under natural ventilation and lowest in the airtight vessels.Eighteen different media were investigated for their effects on multiple shoot induction in both species. The best medium for multiple shoot induction and growth in A. squamosa was Murashige and Skoog medium (MS) + 6-benzylaminopurine (BA; 1.5 mg l–1) + casein hydrolysate (1.0 g l–1) and for A. muricata MS + BA (1.0 mg l–1) + naphthaleneacetic acid (NAA; 0.1 mg l–1).  相似文献   

13.
Olivo  N.  Martinez  C.A.  Oliva  M.A. 《Photosynthetica》2002,40(2):309-313
Plants of Solanum curtilobum (from high altitude) and Solanum tuberosum (from low altitude) were grown in open-top chambers in a greenhouse at either ambient (AC, 360 µmol mol–1) or ca. twice ambient (EC, 720 µmol mol–1) CO2 concentrations for 30 d. CO2 treatments started at the reproductive stage of the plants. There were similar patterns in the physiological response to CO2 enrichment in the two species. Stomatal conductance was reduced by 59 % in S. tuberosum and by 55 % in S. curtilobum, but such a reduction did not limit the net photosynthetic rate (P N), which was increased by approximately 56 % in S. curtilobum and 53 % in S. tuberosum. The transpiration rate was reduced by 16 % in both potato species while instantaneous transpiration efficiency increased by 80 % in S. tuberosum and 90 % in S. curtilobum. Plants grown under EC showed 36 and 66 % increment in total dry biomass, whereas yields (dry mass of tubers) were increased by 40 and 85 % in S. tuberosum and S. curtilobum, respectively. EC promoted productivity by increasing P N. Thus S. tuberosum, cultivated around the world at low altitudes, and S. curtilobum, endemic of the highland Andes, respond positively to EC during the tuberisation stage.  相似文献   

14.
The growth yield of the PUFA-producing marine microalgaIsochrysis galbana ALII-4 grown in a light limited chemostat, was measured under a wide variety of conditions of incident irradiance (I O ) and dilution rates (D). The experiments were conducted under laboratory conditions at 20 °C under continuous light. D ranged from 0.0024 to 0.0410 h–1 at three intensities of Io (820, 1620 and 3270 µmol photon m–2 s–1) close to those found in outdoor cultures. A maximum efficiency max = 0.616 g mol photon–1 was obtained at I O = 820 µmol photon m–2 s–1 and D = 0.030 h–1 and the maximum capacity of the biomass to metabolize the light harvested was found to be 13.1 µmol photon g–1 s–1. Above this value, a significant drop in the system efficiency was observed. A new approach based in the averaged irradiance is used to assess the photon flux absorbed by the biomass.  相似文献   

15.
J. Taylor  A. S. Ball 《Plant and Soil》1994,162(2):315-318
The biodegradability of aerial material from a C4 plant, sorghum grown under ambient (345 µmol mol–1) and elevated (700 µmol mol–1) atmospheric CO2 concentrations were compared by measuring soil respiratory activity. Initial daily respiratory activity (measured over 10 h per day) increased four fold from 110 to 440 cm3 CO2 100g dry weight soil–1 in soils amended with sorghum grown under either elevated or ambient CO2. Although soil respiratory activity decreased over the following 30 days, respiration remained significantly higher (t-test;p>0.05) in soils amended with sorghum grown under elevated CO2 concentrations. Analysis of the plant material revealed no significant differences in C:N ratios between sorghum grown under elevated or ambient CO2. The reason for the differences in soil respiratory activity have yet to be elucidated. However if this trend is repeated in natural ecosystems, this may have important implications for C and N cycling.  相似文献   

16.
Talarico  L.  Cortese  A. 《Hydrobiologia》1993,(1):477-484
Audouinella saviana (Meneghini) Woelkerling was cultured at a constant temperature (24 °C) and different irradiances (from 1 µmol to 30 µmol photons m–2 s–1) of blue (430–470 nm) and green (500–560 nm) light in order to study its adaptive response. Modifications in colour, morphology and ultrastructure of the thalli, together with changes in pigment composition and in the spectral properties of chlorophyll a and R-phycoerythrin, were observed both by means of light and electron microscopy (TEM, SEM) and spectrophotometric and spectrofluorimetric analyses. In this paper we report the adaptive response of the seaweed to blue and green radiation by focussing on the cell wall and on the photosynthetic apparatus, particularly on phycobilisomes in situ and on R-PE after extraction. PBSs were fully structured only under blue light at low irradiance whilst they were absent under green light, whatever the irradiance, in spite of the high R-PE content. This fact, together with the spectral changes of R-PE, suggests adaptation at a molecular level, presumably referable to changes in aggregation state.  相似文献   

17.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

18.
Photosynthetic Responses of Four Hosta Cultivars to Shade Treatments   总被引:1,自引:0,他引:1  
Zhang  J.Z.  Shi  L.  Shi  A.P.  Zhang  Q.X. 《Photosynthetica》2004,42(2):213-218
The effects of shade on the gas exchange of four Hosta cultivars were determined under differing irradiances (5, 30, 50, and 100 % of full irradiance) within pots. Irradiance saturation ranged between 400–800 mol m–2 s–1 among the four cultivars, of which H. sieboldiana cv. Elegans and H. plantagenea cv. Aphrodite exerted the lowest saturation and compensation irradiances. The maximal photosynthetic rate (P max) was significantly higher in shade than in full irradiance in Elegans and Aphrodite, and was at maximum in seedlings grown in 30 % of full irradiance. The best shade treatment for cvs. Antioch and Golden Edger was 50 % of full irradiance. The diurnal gas exchange patterns in four cultivars were greatly influenced by the irradiance. Single-peak patterns of net photosynthetic rate (P N) and stomatal conductance (g s) were observed under 5 and 30 % full irradiance for all the cultivars while Elegans and Aphrodite suffered from midday depression in 50 % of full irradiance. Under open sky, all four cultivars showed two-peak patters in their diurnal gas exchange, but the midday depression was less in Antioch and Golden Edger than in Elegans and Aphrodite. According to their photosynthetic responses to shade, the shade tolerance of the four cultivars was in the order: Elegans>Aphrodite>Antioch>Golden Edger.  相似文献   

19.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

20.
The glacier-fed ephemeral streams of southern Victoria Land (ca. 78° S, 64° E) are colonised by an epilithon dominated by cyanobacterial mats and films. Biomass levels are often high (> 15 µg Chl a · cm–2). The mat structure, pigment and photosynthetic characteristics of these communities have been investigated on site. The mats in high light environments have a layered structure with high levels of light shielding accessory pigments in the upper layers and elevated chlorophyll a and phycocyanin concentrations in the lower layers. Photosynthetic rates per unit area (0.4–3.5 µg C · cm– 2 · hr–1) fall within the range reported for temperate communities. P vs I curves were used to separate high, intermediate and low light communities. Ik values for high light communities were at or lower than PAR recorded at midnight in the polar midsummer (ca 100 µ E m–2 · s–1). We did not detect photoinhibitory responses at the midday light intensities. In situ continuous nutrient enrichment experiments failed to demonstrate N or P limitation to pigment content or photosynthetic rates. We suggest that the growth of these communities is controlled by factors other than light and nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号