首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-situ gelation of semidilute xanthan solutions with trivalent chromium, aluminum or iron ions was studied by rheology and UV-spectroscopy. Measurements of the elastic modulus of xanthan gel cylinders prepared by dialysis against the complexing ion at pH values from 2 to 6 indicate that monomeric species of the ion are ineffective, whereas dimeric or higher oligomeric species are effective in crosslinking the polysaccharide. When chromium was used as the crosslinking species, the dependence of the gelation rate on the ionic concentration followed a power law with a coefficient of 1·7. The gelation time and the gelation rate were found to extrapolate to zero at 1 m Cr for 2·5 mg/ml xanthan. The limiting concentration of xanthan needed for gelation with 5 m Cr(III) at 20°C was estimated as 0·35 mg/ml. This critical xanthan concentration is close to the overlap concentration c* estimated from the experimentally determined intrinsic viscosity [η] using c* = 1·4/[η]. An apparent activation energy for crosslinking of xanthan was calculated as Ea = 42 kJ/mol and Ea = 108 kJ/mol for Cr and Al ions, respectively. The fractal dimensionality of xanthan-Cr at the sol-gel transition was estimated as 1·3 applying the Chambon-Winter criterion for gelation, thus indicating that this gelation criterion is applicable also to stiff-chain polysaccharides such as xanthan.  相似文献   

2.
Optical rotatory dispersion (ORD) data were obtained for a sample of the sodium salt of xanthan gum dissolved in water-cadoxen mixtures at 25°C. The double-helical dimer of the polysaccharide was previously found to dissociate directly to single chains when wcad (the weight fraction of cadoxen in the mixed solvent) increases from 0·3 to 0·8. ORD data were also obtained for solutions prepared by diluting xathan solutions at low concentration in cadoxen with water to different wcad values. From previous work these were taken as those for single dissociated chains in the mixed solvent. These sets of data led to the finding that the specific rotation at 300 nm wavelength does not reflect the dissociation of the xanthan double helix in water-cadoxen mixtures, but the Moffitt parameter does. This parameter gave evidence that single coiling chains in cadoxen become intramolecularly ordered to a conformation similar to that of the individual chains in the double helix when the solution is diluted with water to wcad below 0·4.  相似文献   

3.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

4.
The viscosity in the low shear rate Newtonian domain of three biopolymers, locust bean gum, guar gum and xanthan gum was studied as a function of temperature and of polymer concentration in various aqueous solvents. The intrinsic viscosities [η]o of both galactomannans are not modified in the presence of 10 or 40% sucrose. In this case, a master curve relating the Newtonian specific viscosity (ηsp)o, to the reduced concentration c[η]o is obtained and allows (in good agreement with theoretical conjectures), two critical concentrations C* and C** to be defined, from which the value of the expansion coefficient may be estimated. For xanthan, as expected for a polyelectrolyte, [η]o depends strongly on salt concentration and on added sucrose and the results did not obey the above-mentioned master curve. However, it is shown that (ηsp)o depends only on xanthan concentration whenC > C**, and then it is assumed that chain dimensions have attained their unperturbed values whatever the solvent. Considering that both types of chains, random coils (galactomannans) and semi-rigid (xanthan) should give the same (ηsp)o-C[η]o master curve for C > C** when [η]o is replaced by its unperturbed counterpart [η]θ, a method for estimating [η]θ for the xanthan sample is proposed. In conclusion, the numerous exceptions to the widely accepted (ηsp)o vs C[η]o “universal” behaviour are mainly ascribed to significant differences in expansion coefficient values which depend on both the polymer and the solvent.  相似文献   

5.
The thermal stability of Candida rugosa (C. rugosa) lipase was investigated and compared in n-hexane, benzene, dibutyl-ether as well as [bmim]PF6 and [omim]PF6 ionic liquids and the effect of solvent polarity and water activity were evaluated. Deactivation of the enzyme followed a series-type kinetic model. First order deactivation rate constants and the ratios of specific activities were determined and the kinetics of deactivation were studied. Among the organic solvents, the best stability was observed in n-hexane with a half-life of 6.5 h at water activity of 0.51. In ionic liquids, however, even longer half lives were obtained, and the enzyme was stable in these solvents at 50°C. The highest half-life times were obtained in [bmim]PF6 (12.3 h) and [omim]PF6 (10.6 h). A direct correlation was found between solvent polarity and thermal stability since the higher the polarity of the solvent, the lower was the stability decrease at 50°C comparing to that at 30°C.  相似文献   

6.
Xanthan gum fermentation represents a good model for the study of the mixing of rheologically complex culture broths. Most of the previous work on power consumption dealt with ‘standard’, single impellers and used model fluids to simulate xanthan broths. This work describes the characterization of three dual-impeller combinations (D/T = 0·53) for the mixing of dehydrated—reconstituted fermentation broths of Xanthomonas campestris that had matched rheology to the actual broths. The bottom impeller was a Rushton turbine (RT) and the top impeller was another RT, a 45° pitched blade turbine (PT) or an A-310 Lightnin mixer (A310). The experiments were carried out in a tank of 0·0094 m3 working volume equipped with an air bearing dynamometer. The power was measured in a wide range of xanthan concentrations (5–40 kg m−3) in aerated (0·25, 0·5 and 1·0 vvm) and unaerated conditions. Unaerated power number (Po) vs. Reynolds number (Re) curves showed similar trends for the three combinations. Exponents close to −1 were obtained in the laminar region. A minimum in Po (Pomin) occurred at Re = 30–40, then increasing to a plateau value which was evident at Re> 200. In the transition region Pomin values were 4·3 (RT and RT), 3·6 (RT and PT) and 2·4 (RT and A310). The aerated power data for (RT and PT) and (RT and A-310) showed higher torque instabilities than the dual RT combinations at higher xanthan concentrations. The higher the xanthan concentrations, the higher the drop in power and the less important the effect of the aeration rate. Among the combinations tested, when using Rushton turbines, the well-mixed ‘cavern’ reached the tank wall (i.e., fluid motion was observed) at the lowest volumetric power input. High  相似文献   

7.
8.
Yield stress of 6% (w/w) waxy maize (WXM), cross-linked waxy maize (CLWM), and cold water swelling (CWS) starches in xanthan gum dispersions: 0%, 0.35%, 0.50%, 0.70%, and 1.0% was measured with the vane method at an apparent shear rate of 0.05 s−1. The intrinsic viscosity of the xanthan gum was determined to be: 112.3 dL/g in distilled water at 25 °C. Values of the static (σ0s) and dynamic (σ0d) yield stress of each dispersion were measured before and after breaking down its structure under continuous shear, respectively. The WXM and CWS starches exhibited synergistic behavior, whereas the CLWM starch showed antagonistic effect with xanthan gum. The difference (σ0s − σ0d) was the stress required to break the inter-particle bonding (σb). The contributions of the viscous (σv) and network (σn) components were estimated from an energy balance model. In general, values of σb of the starch–xanthan gum dispersions decreased and those of σn increased with increase in xanthan gum concentration.  相似文献   

9.
The lack of a truly satisfactory sensor which can characterize the thermal environment at the spatial scale experienced by small endotherms has hindered study of their thermoregulatory behavior. We describe a general design for a rugged, easily constructed sensor to measure standard operative temperature, Tes. We present specific designs for adult dark-eyed juncos (Junco hyemalis) and hatchling mallards (Anas platyrhynchos). Sensor response was stable and repeatable (±1.4%) over the course of several months. Over the range of conditions for which validation data were available (variable air temperature and wind with negligible net radiation), sensors predicted the mean net heat production of live animals to within ±0.023 W (equivalent to ±1°C at Tes=15°C). The main limit on accuracy was scatter in the data on metabolism and evaporative water loss in live animals. These sensors are far more rugged and easily constructed than the heated taxidermic mounts previously used to measure Tes. These characteristics facilitate the use of significant numbers of sensors in thermal mapping studies of endotherms.  相似文献   

10.
The influence of xanthan conformation on the physicochemical behaviour of their mixtures with galactomannan from Schizolobium parahybae mannose:galactose ratio (M/G=3), was studied by viscoelastic measurements, differential scanning calorimetry (DSC) and chiroptical (circular dichroism) methods. The results suggested a more effective interaction of the galactomannan with disordered xanthan segments, which are more abundant in low salt concentrations but are still present in lower proportion at temperatures lower than the temperature of xanthan conformational transition (Tm). The dependence of ellipticity with temperature in a circular dichroism (CD) spectra suggested an ordering of the xanthan chains induced by galactomannan at the temperature of gel formation (Tg≈25°C), under conditions where xanthan alone exhibits a disordered conformation. The lower Tg value found (≈25°C) compared with that (60°C) usually described in the literature is certainly related to the M/G ratio and the galactosyl unit distribution along the mannan main chain.  相似文献   

11.
The formation of ordered structure, such as crystallites, in starch was studied by means of differential scanning calorimetry (DSC). The influence of time/temperature treatment and additives such as polyethylene glycol (PEG), bovine serum albumin (BSA) and a carbonate buffer on the formation was investigated. The experiments were planned with a CCC (Central Composite Circumscribed) design. For all three investigated systems it could be concluded that the incubation time at 6 °C was the decisive factor for the amount of ordered structure obtained during the incubation, while the incubation time at 37 °C was the decisive factor for the thermal stability of the crystallites as expressed by Ton, Tm and Tc. The additives seemed to mainly affect the nucleation phase of crystallization process. The additives decreased the time required in order to obtain a certain level of ordering in the incubated starch samples. The carbonate buffer decreased the amount of ordered structure in starch as judged by DSC enthalpy values, while increasing the melting temperature of these structures. The additives PEG and BSA lowered the melting temperatures of the starch in the systems but increased the enthalpy values. By optimization procedure a specific amount of ordered structure with desired thermal characteristics could be predicted.  相似文献   

12.
Zero-shear-rate intrinsic viscosities [eta] of sodium xanthan in aqueous NACl at 25 degrees C were determined for five samples ranging in weight- average molecular weight from 2 x 10(5) to 4 x 10(6) at salt concentrations Cs between 0.005 and 1 M, at which the polysaccharide maintains its double-helical structure. The measured [eta] for every sample was almost independent of Cs, in contrast to usual observations on flexible polyelectrolytes. The persistence length q of sodium xanthan was determined as a function of Cs by use of the theory of Yamakawa et al. for [eta] of an unperturbed worm-like cylinder, and from its Cs dependence the intrinsic persistence length q(o) ( = q at infinite ionic strength) was estimated to be 106 nm. This q(o) value was roughly twice as large as that of double-stranded DNA, indicating a high intrinsic rigidity of the xanthan double helix. The electrostatic contribution ( = q - q(o)) to q was only about 10% even at the lowest Cs of 0.005 M. Thus, it was concluded that above Cs = 0.005 M, the double- helical structure of sodium xanthan is hardly stiffened by electrostatic interactions between charged groups.  相似文献   

13.
Aqueous NaCl solutions of dimerized Na xanthan with salt concentrations of 0.005, 0.01 and 0.1 were exposed to 80°C for different time periods t, and their viscosities were determined as a function of t. The measured relative viscosities decreased markedly with t, suggesting that Na xanthan denatured at 80°C undergoes some conformation changes or degradation. The molecular weights of the test samples recovered at different t were estimated by viscometry in cadoxen, a single-coil solvent for xanthan, and were found to decrease monotonically with t. Thus, it was concluded that the observed decreases in relative viscosity are due primarily to degradation of Na xanthan.  相似文献   

14.
Alanine aminotransferase (ALT) is used in clinical diagnostics, amino acid synthesis and in biosensors. Here we describe the stabilization of soluble porcine ALT by chemical modification with mono- and bis-imidates. The apparent transition temperatures (‘Tm’, the temperature where 50% of initial activity was lost in 10 min) for native and DMS-modified ALT were 46 and 56 °C respectively. The effects of water-miscible organic solvents (methanol, dimethylformamide, dimethylsulphoxide and 1,4-dioxane) on the activity/stability of native and modified forms were determined. In all systems studied, an abrupt decrease in ALT catalytic activity was observed on reaching a certain threshold concentration of the organic solvent. The modified derivatives were more organotolerant than native enzyme. Comparison of the apparent Vmax and Km for 2-oxoglutarate as substrate, determined in 10% (v/v) organic solvent, with the results of thermal inactivation studies showed that the solvents have different effects on ALT's catalytic parameters and on its conformational stability. At 35 °C with no organic solvent the dimethylsuberimidate (DMS)-modified derivative's half-life was 16 times greater than that for native enzyme; in 30% (v/v) solvent at 35 °C, the DMS-modified ALT's half-life was up to 4.6 times greater than native enzyme's. DMS-modified ALT was also more stable in urea and guanidine HCl, and its refolding was more noticeable, than that of native enzyme.  相似文献   

15.
The Ca2+-induced conformational changes of the extracellular microbial polysaccharide xanthan, and of some derivatives, have been investigated by circular dichroism and isothermal microcalorimetric methods. The four polymers studied are native xanthan (NX), acetyl-free xanthan (AFX), pyruvic-free xanthan (PFX) and acetyl-and-pyruvic-free xanthan (APFX), all of about the same molecular weight. Convergent evidence from both techniques indicates that the acetyl group stabilizes the ordered conformation of xanthan, which can be induced by specifically increasing the ionic strength of the dilute aqueous solution by the addition of calcium ions. Pyruvate groups have been shown to have a strong destabilizing effect on the ordered conformation, which is likely to be ascribed to an unfavourable electrostatic contribution. The relative order of stability of the ordered forms was found to be PFX > NX > APFX > AFX; PFX is largely present in the ordered conformation at 25°C even in the calcium-free aqueous solution.  相似文献   

16.
Bovine liver catalase was encapsulated in an aqueous phase of the phospholipid vesicle (liposome) to improve the stability of its tetrameric structure and activity. The catalase-containing liposomes (CALs) prepared were 30, 50 and 100 nm in mean diameters (CAL30, CAL50 and CAL100, respectively). The CAL100 included the types I, II and III based on the amounts of catalase encapsulated. The CAL30, CAL50 and CAL100-I contained one catalase molecule per liposome, and the CAL100-II and CAL100-III on average 5.2 and 17 molecules, respectively. The storage stability of catalase in either CAL system was significantly increased compared to that of free catalase at 4 °C in a buffer of pH 7.4. At 55 °C, free catalase was much more deactivated especially with decreasing its concentration predominantly due to enhanced dissociation of catalase into subunits while it was so done at excessively high enzyme concentration mainly due to enhanced formation of catalase intermolecular aggregates. Among the three types of CAL100, the CAL100-II showed the highest thermal stability, indicating that an excess amount of catalase in the CAL100-III was also disadvantageous to maintain an active form of the catalase even in liposome. In the CAL100-III, however, the stability of catalase was significantly improved compared to that of free catalase at the same concentration. The CAL thermal stability was little affected by the liposome size as observed in the CAL30, CAL50 and CAL100-I. An intrinsic tryptophan fluorescence of the catalase recovered from the CAL100-II thermally treated at 55 °C revealed that a partially denatured catalase molecule was stabilized through its hydrophobic interaction with liposome membrane. This interaction depressed not only dissociation of catalase into subunits but also formation of an inactive intermolecular aggregate between the catalase molecules in a liposome. Furthermore, either type of CAL100 showed a higher stability than free catalase in the successive decompositions of 10 mM H2O2 at 25 °C mainly because the H2O2 concentration was kept low inside liposomes due to the permeation barrier of the lipid membrane to H2O2.  相似文献   

17.
A method of determining of the effective diffusion coefficient of substrate in a particle, where the diffusion and consumption of substrate by biocatalytic reaction are present simultaneously, was designed and experimentally verified. The method is based on measuring the overall rate of heterogeneous biocatalytic reaction in particles of varying diameter. The effective diffusion coefficient, De, was determined by fitting the measured reaction rates with the solution of the reaction-diffusion equation. The method is tailored for cases where the enzyme reaction is governed by the Michaelis-Menten kinetics. The value of Km required for the solution of the mathematical model was adopted from the measurement of the kinetics of free cells, whereas the rate parameter, k2, was optimized together with De. As an experimental model, the sucrose hydrolysis catalyzed by Ca-alginate-entrapped yeast cells was examined. The particle diameter varied in the range of 1.2–3.9 mm and the initial reaction rates were measured in a batch-stirred reactor at a sucrose concentration of 100 m . The De of sucrose at 30°C was found to be 2.9 · 10−10 m2s−1.  相似文献   

18.
Pure p-toluenesulfonyl (tosyl) starch with an insignificant formation of chlorodeoxy groups was prepared by reacting starch dissolved in the solvent system N,N-dimethyl acetamide in combination with LiCl. Interestingly, the viscosity of the starch dissolved in the solvent system increases with the increasing amount of LiCl. The tosyl starch samples obtained were characterized by means of elemental analysis, FITR and 13C NMR spectroscopy. The degree of substitution (DSTos) of the products can be controlled in range from 0.4 to 2.0 by adjusting the molar ratio of tosyl chloride per anhydroglucose unit up to 6.0 mol/mol. The tosyl starch samples are readily soluble in various organic solvents. As revealed by means of 13C NMR analysis as well as by analysis of the corresponding 6-iodo-6-deoxy derivatives, a faster tosylation at position 2 than at positions 6 and 3 takes place. The thermal stability of tosyl starch increases with increasing DSTos and degradation starts at 166°C for the sample of DSTos of 0.61. The remaining OH groups of tosyl starch are reactive and can be additionally modified by acetylation reactions.  相似文献   

19.
The effects of temperature and concentration on the viscosity of orange peel pectin solutions were examined at five different temperatures between 20 and 60°C and five concentration levels between 2.5–20 kg/m3. The effects of temperature was described by an Arrhenius-type equation. The activation energy for viscous flow was in the range 19.53–27.16 kJ/mol, depending on the concentration. The effect of concentration was described by two types of equation, power-law and exponential. Equations were derived which describes the combined effects of temperature and concentration on the viscosity for two different models in the range of temperatures and concentrations studied. Orange peel pectin was extracted by using HCl (pH 2.5, 90°C, 90 min) ammonium oxalate (0.25%, pH 3.5, 75°C, 90 min) and EDTA (0.5%, 90°C, 90 min) extraction procedures. The best result was obtained with ammonium oxalate extraction in which the pectin content of the final product was 30.12%, although the efficiency among the procedures varied.The average molecular weight was measured by light scattering technique. Magnitudes of intrinsic viscosity and molecular weight of pectins obtained by extraction with HCl, ammonium oxalate and EDTA were 0.262, 0.281, 0.309 m3/kg and 84 500, 91 400, 102 800 kg/kgmol, respectively. The molecular weight dependence of the intrinsic viscosity of the orange peel pectin solutions was expressed by Mark–Houwink–Sakurada equation. The data were fitted to equation as ηi=2.34×10−5(Mw,ave)0.8224 which helps to evaluate the average molecular weight of pectin solutions from orange peel with a knowledge of their intrinsic viscosity.  相似文献   

20.
The solution properties of hydroxyethyl cellulose (HEC) and hydrophobically modified hydroxyethyl cellulose (HM-HEC) have been investigated by means of viscometric and spectroscopic techniques involving free radical and fluorescent probes. The greater viscosity of HM-HEC solutions above a critical polymer concentration (Cp) of approximately 0·2% has been interpreted in terms of the formation of a three-dimensional network structure in which the polymer chains are effectively crosslinked by the intermolecular association of neighbouring hydrophobic side chains. Cp is considerably less than the predicted polymer coil overlap concentration (C*) of approximately 1%.

The interaction of the polymers with an anionic surfactant, sodium dodecyl sulphate (SDS) has also been investigated. A mechanism involving the interaction of free surfactant with the regions of intermolecular hydrophobic association is suggested to account for the considerable differences in the rheological behaviour of the polymers in the presence of SDS.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号