首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We present the first model of the glenohumeral joint implementing active muscle driven humeral positioning and stabilization without a priori constraints on glenohumeral kinematics. Previously established methods were used to predetermine the path, activation timing and resultant force contribution of 27 individual muscle segments at any given joint position. Artificial boundary conditions were applied in a three-dimensional finite element model of the joint and progressively released until the humeral head was completely free to rotate and translate within the fixed glenoid according to the compressive component of the predetermined resultant force. The shear component was then added such that no boundary conditions other than muscular force were applied. The framework was exploited to simulate elevation as a composite of instantaneous positions and theoretically demonstrate that joint stability can be achieved exclusively through muscular activity. Predicted muscle moment arms, muscle activation timing, humeral head translations, joint contact forces and stability ratio were comparable with existing experimental and in vivo data. This framework could be valuable for subject specific modeling and may be used to address clinical hypotheses related to shoulder joint stability that cannot be pursued using simplified modeling approaches.  相似文献   

2.
An analytical model of the human glenohumeral joint was developed to predict glenohumeral kinematics and investigate how the glenohumeral capsule and articular contact between the humeral head and the glenoid stabilize the joint. This was performed during a simulation of an apprehension clinical exam or the cocked phase of throwing, when the humerus is susceptible to anterior instability or dislocation. Contact between the joint surfaces was modeled using a deformable articular contact method and the capsule was modeled as five elements with the ability to wrap around the surface of the humeral head. Experimental measurements (Novotny et al., Journal of Shoulder and Elbow surgery, 1998, 7, 629-639) provided geometric data from four in vitro specimens and kinematic results to validate model predictions. Material properties were taken from the literature. An equilibrium approach was used with the forces and moments produced by the ligaments and surface contact balanced against those applied externally to the humerus during external rotation of the abducted and extended humerus. The six equilibrium equations were solved for the position and orientation of the humerus. The center of the humeral head translated posteriorly and superiorly with external rotation. Model predictions for translational and rotational ranges of motion were not significantly different from experimental findings; however, at individual moment increments, the model underestimated the external rotation and overestimated the superior-inferior position of the humerus relative to the glenoid. The anterior band of the inferior glenohumeral ligament increased in tension with external rotation, while the axillary pouch and posterior band decreased in tension. Contact area, stress and force increased with external rotation and the contact area moved posteriorly and inferiorly around the rim of the glenoid. The model results provide information on how the relationship between the ligament element tensions and contact forces may act to avoid glenohumeral instability.  相似文献   

3.
The estimation of muscle forces in musculoskeletal shoulder models is still controversial. Two different methods are widely used to solve the indeterminacy of the system: electromyography (EMG)-based methods and stress-based methods. The goal of this work was to evaluate the influence of these two methods on the prediction of muscle forces, glenohumeral load and joint stability after total shoulder arthroplasty. An EMG-based and a stress-based method were implemented into the same musculoskeletal shoulder model. The model replicated the glenohumeral joint after total shoulder arthroplasty. It contained the scapula, the humerus, the joint prosthesis, the rotator cuff muscles supraspinatus, subscapularis and infraspinatus and the middle, anterior and posterior deltoid muscles. A movement of abduction was simulated in the plane of the scapula. The EMG-based method replicated muscular activity of experimentally measured EMG. The stress-based method minimised a cost function based on muscle stresses. We compared muscle forces, joint reaction force, articular contact pressure and translation of the humeral head. The stress-based method predicted a lower force of the rotator cuff muscles. This was partly counter-balanced by a higher force of the middle part of the deltoid muscle. As a consequence, the stress-based method predicted a lower joint load (16% reduced) and a higher superior–inferior translation of the humeral head (increased by 1.2 mm). The EMG-based method has the advantage of replicating the observed cocontraction of stabilising muscles of the rotator cuff. This method is, however, limited to available EMG measurements. The stress-based method has thus an advantage of flexibility, but may overestimate glenohumeral subluxation.  相似文献   

4.
Due to the shallowness of the glenohumeral joint, a challenging but essential requirement of a glenohumeral prosthesis is the prevention of joint dislocation. Weak glenoid bone stock and frequent dysfunction of the rotator cuff, both of which are common with rheumatoid arthritis, make it particularly difficult to achieve this design goal. Although a variety of prosthetic designs are commercially available only a few experimental studies have investigated the kinematics and dislocation characteristics of design variations. Analytical or numerical methods, which are predictive and more cost-effective, are, apart from simple rigid-body analyses, non-existent. The current investigation presents the results of a finite element analysis of the kinematics of a total shoulder joint validated using recently published experimental data for the same prostheses. The finite element model determined the loading required to dislocate the humeral head, and the corresponding translations, to within 4% of the experimental data. The finite element method compared dramatically better to the experimental data (mean difference=2.9%) than did rigid-body predictions (mean difference=37%). The goal of this study was to develop an accurate method that in future studies can be used for further investigations of the effect of design parameters on dislocation, particularly in the case of a dysfunctional rotator cuff. Inherently, the method also evaluates the glenoid fixation stresses in the relatively weak glenoid bone stock. Hence, design characteristics can be simultaneously optimised against dislocation as well as glenoid loosening.  相似文献   

5.
A novel technique of “anterior offsetting” of the humeral head component to address posterior instability in total shoulder arthroplasty has been proposed, and its biomechanical benefits have been previously demonstrated experimentally. The present study sought to characterize the changes in joint mechanics associated with anterior offsetting with various amounts of glenoid retroversion using cadaver specimen-specific 3-dimensional finite element models. Specimen-specific computational finite element models were developed through importing digitized locations of six musculotendinous units of the rotator cuff and deltoid muscles based off three cadaveric shoulder specimens implanted with total shoulder arthroplasty in either anatomic or anterior humeral head offset. Additional glenoid retroversion angles (0°, 10°, 20°, and 30°) other than each specimen׳s actual retroversion were modeled. Contact area, contact force, peak pressure, center of pressure, and humeral head displacement were calculated at each offset and retroversion for statistical analysis. Anterior offsetting was associated with significant anterior shift of center of pressure and humeral head displacement upon muscle loading (p<0.05). Although statistically insignificant, anterior offsetting was associated with increased contact area and decreased peak pressure (p > 0.05). All study variables showed significant differences when compared between the 4 different glenoid retroversion angles (p < 0.05) except for total force (p < 0.05). The study finding suggests that the anterior offsetting technique may contribute to joint stability in posteriorly unstable shoulder arthroplasty and may reduce eccentric loading on glenoid components although the long term clinical results are yet to be investigated in future.  相似文献   

6.
In shoulder arthroplasty, there is no consensus about the ideal mismatch between a prosthetic humeral head and a glenoïd component. Thus, investigations into mismatch effects from a biomechanical point of view can be useful. The aim of this in vitro study was to help us understand mismatch influence on bone strains, translational forces in the joint and implant/bone displacements in implanted scapulae.

Five fresh cadaveric scapulae were implanted with a cemented keeled polyethylene implant. The lower part of the scapulae was embedded and the loadings were carried out using five metallic spheres simulating mismatches of 0, 2, 4, 5 and 6 mm. Loadings included a constant compressive preload of 392 N and an anterior, posterior, inferior and superior translation of 2.5 mm. We measured the transversal force necessary to produce the imposed translation, the strains at six locations around the peripheral cortex of the glenoïd using strain gages and the relative implant/bone displacements using CCD cameras.

Generally, the increase of mismatch reduced the translational forces, the strains around the glenoïd and, except for the anterior loading, the relative implant/bone displacements. Few and even no significant differences were observed when the mismatch varied from 0 to 2 mm; the number of significant differences increased when the mismatch varied from 0 to 4 mm and from 0 to 5 mm; the results obtained for a 0–6 mm variation in mismatch were comparable to those obtained for a 0–5 mm variation.

This study underlines that the mismatch has a significant effect on bone strains, relative implant/bone displacements and induced translational forces when a compressive preload and imposed translations were applied on implanted scapulae.  相似文献   


7.
To validate the assumption that the center of rotation in the glenohumeral (GH) joint can be described based on the geometry of the joint, two methods for calculation of the GH rotation center were compared. These are a kinematic estimation based on the calculation of instantaneous helical axes, and a geometric estimation based on a spherical fit through the surface of the glenoid. Four fresh cadaver arms were fixed at the scapula and fitted with electromagnetic sensors. Each arm was moved in different directions while at the same time the orientation of the humerus was recorded. Subsequently, each specimen was dissected and its glenoid and humeral head surfaces were digitized. Results indicate no differences between the methods. It is concluded that the method to estimate the GH center of rotation as the center of a sphere through the glenoid surface, with the radius of the humeral head, appears to be valid.  相似文献   

8.
The evaluation of the glenohumeral joint laxity requires the estimate of displacements of the humeral head centre (HHC) with respect to the glenoid. To the authors? knowledge, several studies have been conducted to estimate HHC translations in vivo but data under anterior loading conditions has not been collected yet. Aim of this study was to develop a non-invasive experimental methodology based on magnetic resonance (MR) imaging for the in vivo evaluation of the HHC translations due to an anteriorly directed force. Fourteen asymptomatic shoulders were acquired using a horizontal open MR scanner with the subjects in the supine position both at 15° and 90° of arm abduction with and without an anterior force of 20 N applied at the HHC level. When no load was applied, from 15° to 90° of arm abduction, the HHC moved, anteriorly (1.5±1.3 mm) and superiorly (1.8±1.3 mm) while smaller displacements were observed medio-laterally (0.4±0.7 mm). Under the application of the anterior force the 3D displacement of the HHC with respect to the glenoid was 1.6±1.2 mm and 1.3 ±0.7 mm, respectively at 15° and 90° of arm abduction. The level of precision associated to the GHJ translation was less than 0.33 mm along all directions i.e. one order of magnitude smaller than the relevant translations. In conclusion, the MRI-based methodology allowed for the analysis of HHC displacements under conditions of anterior loads within an acceptable level of reliability.  相似文献   

9.
Despite its importance for the understanding of joint mechanics in healthy subjects and patients, there has been no three-dimensional (3D) in vivo data on the translation of the humeral head relative to the glenoid during abduction under controlled mechanical loading. The objective was therefore to analyze humeral head translation during passive and active elevation by applying an open MR technique and 3D digital postprocessing methods. Fifteen healthy volunteers were examined with an open MR system at different abduction positions under muscular relaxation (30-150 degrees of abduction) and during activity of shoulder muscles (60-120 degrees ). After segmentation and 3D reconstruction, the center of mass of the glenoid and the midpoint of the humeral head were determined and their relative position calculated. During passive elevation, the humeral head translated inferiorly from +1.58mm at 30 degrees to +0. 36mm at 150 degrees of abduction, and posteriorly from +1.55mm at 30 degrees to -0.07mm at 150 degrees of abduction. Muscular activity brought about significant changes in glenohumeral translation, the humeral head being in a more inferior position and more centered, particularly at 90 and 120 degrees of abduction (p<0.01). In anterior/posterior direction the humeral head was more centered at 60 and 90 degrees of abduction during muscle activity. The data demonstrate the importance of neuromuscular control in providing joint stability. The technique developed can also be used for investigating the effect of muscle dysfunction and their relevance on the mechanics of the shoulder joint.  相似文献   

10.
Surface areas of humeral and femoral heads scale largely as a function of body size. However, differences in the relative sizes of these articular surfaces are correlated with differential joint mobility and force transmission through fore- and hindlimbs. They can therefore assist interpretation of the positional behavior of extinct species. In this paper, we document variation in ratios of humeral head surface area to femoral head surface area among extant primates and other mammals. We then examine a group of extinct primates: the subfossil lemurs of Madagascar. Many Malagasy le murs, including some giant extinct species with very long forelimbs and short hindlimbs, have relatively small humeral heads and large femoral heads. We explore the adaptive implications of this pattern. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   

12.
Accurate spatial location of joint center (JC) is a key issue in motion analysis since JC locations are used to define standardized anatomical frames, in which results are represented. Accurate and reproducible JC location is important for data comparison and data exchange. This paper presents a method for JC locations based on the multiple regression algorithms without preliminary assumption on the behavior of the joint-of-interest. Regression equations were obtained from manually palpable ALs on each bone-of-interest. Results are presented for all joint surfaces found on the clavicle, scapula and humeral bone. Mean accuracy errors on the JC locations obtained on dry bones were 5.2±2.5 mm for the humeral head, 2.5±1.1 mm for the humeral trochlea, 2.3±0.9 mm for the humeral capitulum, 8.2±3.9 mm for the scapula glenoid cavity, 7.2±3.2 mm for the scapular aspect of the acromio-clavicular joint, 3.5±1.8 mm for the clavicular aspect of the sternoclavicular joint and 3.2±1.4 mm for the clavicular aspect of the acromio-clavicular joint. In-vitro and in-vivo validation accuracy was 5.3 and 8.5 mm, respectively, for the humeral head center location. Regression coefficients for joint radius dimension and joint surface orientation were also processed and reported in this paper.  相似文献   

13.
The shoulder joint of the Microchiroptera shows a remarkable morphological variation that has been studied in 20 individual bats from 15 species and 11 families. The basic morphology of the shoulder joint, with a globular humeral head and a corresponding glenoid cavity, is found in the Megachiroptera and, within the Microchiroptera, in the Rhinopomatidae. Besides this basic shoulder joint, there are two derived joint types: the derived and specialized shoulder joint with a single articular surface on the scapula and a more-or-less oblong humeral head, and the derived and specialized shoulder joint with secondary articular surfaces on the trochiter and on the dorsal aspect of the scapula. The first type of derived joint is most strikingly developed in the Mormoopidae and the Noctilionidae, the second one in the Vespertilionidae and the Molossidae. It is suggested that both types of derived shoulder joints have the functional significance of reducing the pronatory movements of the abducted forearm during the downstroke of the wing-beat cycle. This suggested function of the secondary shoulder joint is a new approach to understanding this very peculiar structure. In species with these specialized shoulder joints, the downstroke musculature is comparatively better developed and the M. serratus ant. post. div. comparatively less well developed. A hypothesis is offered to explain and combine the osteological and myological findings. Each of the derived types of shoulder joints has developed independently more than once through parallel evolution.  相似文献   

14.
Knowledge of forces in the glenohumeral joint is essential for understanding normal and pathologic shoulder function. It forms the basis for performing fracture treatment or joint replacement surgery, for optimizing implant design and fixation and for improving and verifying analytical biomechanical models of the shoulder. An instrumented shoulder implant with telemetric data transmission was developed to measure six components of joint contact forces and moments. A patient with humeral head arthrosis achieved good joint function after its implantation. During the first 7 postoperative months, the contact force remained below 100% BW (percent body weight) for most activities of daily living. It ranged up to 130% BW for arm positions close to the limits of motion or when acting against external resistance. When the patient tried to turn a blocked steering wheel with maximum effort, the force rose to about 150% BW, the highest level observed thus far. Of great interest were the force directions relative to the humerus, especially those in the sagittal plane, which were not greatly influenced by the type of exercise, the arm position or the external resistance. The moments due to friction in the joint reached 5.2 Nm. The friction-induced shift of contact forces relative to the implant head centre ranged up to 6.3mm. These first worldwide in vivo measurements of glenohumeral contact forces are being continued in more patients and for longer postoperative times.  相似文献   

15.
The tensile and compressive properties of human glenohumeral cartilage were determined by testing 120 rectangular strips in uniaxial tension and 70 cylindrical plugs in confined compression, obtained from five human glenohumeral joints. Specimens were harvested from five regions across the articular surface of the humeral head and two regions on the glenoid. Tensile strips were obtained along two orientations, parallel and perpendicular to the split-line directions. Two serial slices through the thickness, corresponding to the superficial and middle zones of the cartilage layers, were prepared from each tensile strip and each compressive plug. The equilibrium tensile modulus and compressive aggregate modulus of cartilage were determined from the uniaxial tensile and confined compression tests, respectively. Significant differences in the tensile moduli were found with depth and orientation relative to the local split-line direction. Articular cartilage of the humeral head was significantly stiffer in tension than that of the glenoid. There were significant differences in the aggregate compressive moduli of articular cartilage between superficial and middle zones in the humeral head. Furthermore, tensile and compressive stress-strain responses exhibited nonlinearity under finite strain, while the tensile modulus differed by up to two orders of magnitude from the compressive aggregate modulus at 0% strain, demonstrating a high degree of tension-compression nonlinearity. The complexity of the mechanical properties of human glenohumeral cartilage was exposed in this study, showing anisotropy, inhomogeneity, and tension-compression nonlinearity within the same joint. The observed differences in the tensile properties of human glenohumeral cartilage suggest that the glenoid may be more susceptible to cartilage degeneration than the humeral head.  相似文献   

16.
Polyethylene wear after total hip arthroplasty may occur as a result of normal gait and as a result of subluxation and relocation with impact. Relocation of a subluxed hip may impart a moment to the cup creating sliding as well as compression at the cup liner interface. The purpose of the current study is to quantify, by a validated finite element model, the forces generated in a hip arthroplasty as a result of subluxation relocation and compare them to the forces generated during normal gait. The micromotion between the liner and acetabular shell was quantified by computing the sliding track and the deformation at several points of the interface. A finite element analysis of polyethylene liner stress and liner/cup micromotion in total hip arthroplasty was performed under two dynamic profiles. The first profile was a gait loading profile simulating the force vectors developed in the hip arthroplasty during normal gait. The second profile is generated during subluxation and subsequent relocation of the femoral head. The forces generated by subluxation relocation of a total hip arthroplasty can exceed those forces generated during normal gait. The induced micromotion at the cup polyethylene interface as a result of subluxation can exceed micromotion as a result of the normal gait cycle. This may play a significant role in the generation of backsided wear. Minimizing joint subluxation by restoring balance to the hip joint after arthroplasty should be explored as a strategy to minimize backsided wear.  相似文献   

17.
Glenoid component loosening is the most-frequently encountered problem in the total shoulder arthroplasty. The purpose of the study was to investigate whether failure of the glenoid component is caused by stresses generated within the cement mantle, implant materials and at the various interfaces during humeral abduction, using 3-D FE analyses of implanted glenoid structures. FE models, one total polyethylene and the other, metal backed polyethylene, were developed using CT-scan data and submodelling technique, which was based on an overall solution of a natural scapula model acted upon by all the muscles, ligaments and joint reaction forces. Material interfaces were assumed to be fully bonded. Based on the FE stress analysis, the following observations were made. (1) The submodelling technique, which required a large-size submodel and the use of prescribed displacements at cut-boundaries located far away from the glenoid, was crucial for evaluations on glenoid component. (2) Total polyethylene results in lower-peak stresses (tensile: 10 MPa, Von-Mises: 8.31 MPa) in the cement as compared to a metal-backed design (tensile: 11.5 MPa, Von-Mises: 9.81 MPa). The maximum principal (tensile) stresses generated in the cement mantle for both the designs were below its failure strength, but might evoke crack initiation. (3) The cement-bone interface adjacent to the tip of the keel seemed very likely to fail for both the designs. In case of metal-backed design, this interface adjacent to the tip of the keel appears even more likely to fail. (4) High metal-cement interface stresses for a moderate load might indicate failure at higher load. (5) It appears that both the designs were vulnerable to failure in some ways or the other. A part of the subchondral bone along the longitudinal axis of the glenoid cavity should be preserved to strengthen the glenoid structure and to reduce the use of cement.  相似文献   

18.
The glenohumeral joint is the most dislocated joint in the body due to the lack of bony constraints and the dependence on soft tissue for stability. The roles that various structures provide to joint function are important for understanding injury treatment and orthopaedic device design purposes. The goal of this study was to develop a computational model of the glenohumeral joint whereby joint behaviour was dictated by articular contact, ligamentous constraints, muscle loading and external perturbations. The bone structure of the computational model consisted of assembled computer tomographic images of the scapula, humerus and clavicle. The soft tissue elements were composed of forces and tension-only springs that represented muscles and ligaments. Validation of this model was achieved by comparing computational predictions to the results of a cadaveric experiment in which the relative contribution of muscles and ligaments to anterior joint stability was examined. The computational model predicted an anterior subluxation force that was similar to the cadaveric experimental results in humeral external rotation. The individual structure results showed the subscapularis to be critical to stabilisation in both neutral and external rotations, the biceps stabilised the joint in neutral but not in external rotation, and the inferior glenohumeral ligament resisted anterior displacement only in external rotation. The model's predictions were similar to the conclusions of the cadaveric experiment and the literature. Knowledge gained from this type of model could assist in further understanding the contribution of soft tissue stabilisers to joint function, pre-operative planning or the design of orthopaedic implants.  相似文献   

19.
The effect of speed on leg stiffness and joint kinetics in human running   总被引:3,自引:0,他引:3  
The goals of this study were to examine the following hypotheses: (a) there is a difference between the theoretically calculated (McMahon and Cheng, 1990. Journal of Biomechanics 23, 65-78) and the kinematically measured length changes of the spring-mass model and (b) the leg spring stiffness, the ankle spring stiffness and the knee spring stiffness are influenced by running speed. Thirteen athletes took part in this study. Force was measured using a "Kistler" force plate (1000 Hz). Kinematic data were recorded using two high-speed (120 Hz) video cameras. Each athlete completed trials running at five different velocities (approx. 2.5, 3.5, 4.5, 5.5 and 6.5 m/s). Running velocity influences the leg spring stiffness, the effective vertical spring stiffness and the spring stiffness at the knee joint. The spring stiffness at the ankle joint showed no statistical difference (p < 0.05) for the five velocities. The theoretically calculated length change of the spring-mass model significantly (p < 0.05) overestimated the actual length change. For running velocities up to 6.5 m/s the leg spring stiffness is influenced mostly by changes in stiffness at the knee joint.  相似文献   

20.
Stress analysis in the individual parts of the scapula under normal physiological conditions is necessary to understand the load transfer mechanism, its relation with morphology of bone and to analyse the deviations in stress patterns due to implantation of the glenoid. The purpose of this study was to obtain stress distribution in the scapula during abduction of the arm and to obtain a qualitative estimate of the function of coracoacromial ligament. An accurate three-dimensional (3D) finite element (FE) model of the natural scapula has been developed for this purpose, using computed tomography data and shell-solid modelling approach. The model was experimentally validated. A musculoskeletal shoulder model of forces that calculates all muscle, ligament and joint reaction forces, in six load cases (30-180 degrees) during unloaded humeral abduction was used as applied loading conditions for the 3D FE model. High tensile and compressive stresses (15-60 MPa) were generated in the thick bony ridges of the scapula, like the scapular spine, lateral border, glenoid and acromion. High compressive stresses (45-58 MPa) were evoked in the glenoid and at the connection of glenoid-scapular spine-infraspinous fossa. The stresses in the infraspinous fossa and supraspinous fossa were low (0.05-15 MPa). These results indicated that the transfer of major muscle and joint reaction take place predominantly through the thick bony ridges, whereas the fossa area act more as attachment sites of large muscles. During humeral abduction, coracoacromial ligament was stretched, and presumably will be under tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号