首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In experiments on awake rabbits the effect of bradykinin, morphine and naloxone (applied by means of microiontophoresis) on sensomotor cortical neurons was studied. Bradykinin increased the discharge frequency in the majority of neurons. Morphine inhibited the neuronal activity. Bradykinin had no activating effect in the presence of morphine. Naloxone eliminated morphine depressing effect and restored the neuronal reaction to bradykinin. According to the data obtained it is suggested that bradykinin interacts with opiate receptors in the brain.  相似文献   

2.
The action of bradykinin on spontaneous electric activity of Helix pomata neurones from the subfaringeal complex was studied by microionophoresis. Bradykinin not only facilitates the neuronal responses to synaptic activation, but also prolongs the activation-induced generation of the potential action. Bradykinin effects were observed only in experiments conducted in spring.  相似文献   

3.
4.
We recently identified a vagally mediated excitatory lung reflex by injecting hypertonic saline into the lung parenchyma (Yu J, Zhang JF, and Fletcher EC. J Appl Physiol 85: 1485-1492, 1998). This reflex increased amplitude and burst rate of phrenic (inspiratory) nerve activity and suppressed external oblique abdominal (expiratory) muscle activity. In the present study, we tested the hypothesis that bradykinin may activate extravagal pathways to stimulate breathing by assessing its reflex effects on respiratory drive. Bradykinin (1 microg/kg in 0.1 ml) was injected into the lung parenchyma of anesthetized, open-chest and artificially ventilated rabbits. In most cases, bradykinin increased phrenic amplitude, phrenic burst rate, and expiratory muscle activity. However, a variety of breathing patterns resulted, ranging from hyperpnea and tachypnea to rapid shallow breathing and apnea. Bradykinin acts like hypertonic saline in producing hyperpnea and tachypnea, yet the two agents clearly differ. Bradykinin produced a higher ratio of phrenic amplitude to inspiratory time and had longer latency than hypertonic saline. Although attenuated, bradykinin-induced respiratory responses persisted after vagotomy. We conclude that bradykinin activates multiple afferent pathways in the lung; portions of its respiratory reflexes are extravagal and arise from sympathetic afferents.  相似文献   

5.
The effect of bradykinin (BK) on proteinase activity, prostaglandin synthesis, and the production of interleukin-6 (IL-6) was investigated in cultures of human osteoblast-like cells. Bradykinin had no effect on stromelysin activity and plasminogen activator activity produced by human osteoblast-like cells. However, BK stimulated the production of prostaglandin E2, an effect that was markedly enhanced by pre-incubation with recombinant interleukin-1 alpha (rhIL-1 alpha), but was apparently unaffected by BK receptor antagonists types 1 and 2. Bradykinin stimulated the intracellular accumulation of total inositol phosphates suggesting that its effects were mediated by stimulation of phosphoinositide metabolism. Bradykinin within the dose range of 10(-11)-10(-5) M also significantly stimulated the production of IL-6. Bradykinin may, therefore, mediate a variety of responses in bone under both physiological and pathological conditions.  相似文献   

6.
Four hybridoma cell lines have been established that secrete monoclonal antibodies to nonapeptide bradykinin. Bradykinin coupled to ovalbumin, using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as coupling agent, was used to immunize BALB/c mice. Spleen cells from the immunized animals were fused to P3-X63-AG8-653 mouse myeloma cells. The resultant hybrid cells were screened by enzyme-linked immunoassay for production of antibodies to bradykinin. Hybrids from four positive wells were subcloned by limiting dilution and expanded as ascites tumor into pristane-primed mice. All the four hybrids secreted monoclonal antibodies of IgG1 (k) isotype. Unlabeled peptides bradykinin, lysyl-bradykinin (kallidin) and methionyl-lysyl-bradykinin competed with the radiolabeled [Tyr1]kallidin for monoclonal antibody binding sites. These antibodies recognized preferentially either NH2- or COOH-terminals of the nonapeptide bradykinin and can distinguish between des-Arg1-bradykinin and des-Arg9-bradykinin. Bradykinin fragments smaller than eight residues were not recognized by these antibodies. Monoclonal antibodies BK-D6A5, BK-B6C9 and BK-A3D9 neutralized the smooth muscle contractile activity of bradykinin. An enzyme-linked immunoassay developed using these monoclonal antibodies showed the effective range of bradykinin determination between 5 and 150 ng.  相似文献   

7.
目的缓激肽和缓激肽B2受体在肠神经系统中起重要作用。缓激肽通常参与肠道的炎症反应和神经保护,这种作用取决于缓激肽诱导前列腺素的形成。环氧合酶1 (COX1)和环氧合酶2 (COX2)催化花生四烯酸转化为前列腺素。本研究旨在探讨缓激肽刺激对豚鼠肠神经前列腺素E2 (p GE2)释放和COX2表达的影响及信号机制。方法本文通过免疫荧光检测肠神经细胞中COX2与神经细胞标志物Anti-Hu和ch AT的表达;采用PCR及蛋白质印迹(Western blot)检测不同条件下缓激肽刺激对COX2表达的影响;使用缓激肽B1受体的选择性拮抗剂Leu-8和B2受体的选择性拮抗剂HOE-140,研究缓激肽影响COX2表达的信号机制;利用COX2选择性拮抗剂NS398和COX1拮抗剂FR12207,观察COX2在缓激肽诱导p EG2释放的作用。结果 COX2与神经细胞标志物Anti-Hu和ch AT在肠神经细胞上共同表达,缓激肽可通过B2受体诱导肠神经细胞COX2的表达。缓激肽刺激引起的肠神经细胞p GE2的释放与COX2表达升高密切相关。结论缓激肽通过B2R影响肠道黏膜下神经丛COX2的表达,肠道缓激肽...  相似文献   

8.
Identification of Bradykinin in Mammalian Brain   总被引:13,自引:6,他引:7  
Abstract: Bradykinin-like activity was purified from acetic acid extracts of saline-perfused rat brains by gel filtration chromatography and two reverse-phase HPLC systems capable of resolving bradykinin from lysyl-bradykinin and other bradykinin analogs and fragments. Addition of [3H]bradykinin to extracts permitted calculation of recoveries and monitoring of chromatographic fractions. Fractions were examined by radioimmunoassay using a potent and highly specific antiserum raised against bradykinin-human albumin conjugates in rabbits. Bradykinin receptor-active material was also measured by radioreceptor assay using guinea pig ileum, as well as by a bioassay with the estrous rat uterus. Active material chromatographed as authentic bradykinin in all systems. Levels of 0.6 pmol/g whole rat brain were detected, with eight times higher levels in the hypothalamus. Activity increased up to 10-fold following treatment with trypsin; treatment with α-chymotrypsin or angiotensin-converting enzyme substantially reduced activity. Similar levels and distribution of bradykinin-like activity were also detected in guinea pig brain extracts. These data substantiate the existence of authentic bradykinin in mammalian brain.  相似文献   

9.
The effect of bradykinin on bone resorption was studied in cultures of newborn-mouse calvaria. Bradykinin (0.03 microM, 1 microM) stimulated the release of 45Ca2+ from bones dissected out from mice prelabelled in vivo with 45Ca. Bradykinin (1 microM) also augmented the release of stable calcium ( 40Ca ), Pi and the lysosomal enzyme beta-glucuronidase. The stimulatory effect of bradykinin on mineral mobilization and lysosmal -enzyme release could be blocked by indomethacin. It is speculated that concomitant generation of thrombin and bradykinin in areas of trauma and inflammation may induce resorption of nearby bone tissue.  相似文献   

10.
The effects of bradykin on prostaglandin metabolism in canine mesenteric vessels were examined. Bradykinin stimulated microsomal prostaglandin synthesis in both artery and vein; this stimulation was more pronounced when [14C] hosphatidylcholine rather than [14C] arachidonate was used as the substrate for prostaglandin synthetase. This suggested that bradykinin enhanced a membrane phospholipase. In addition, bradykinin selectively stimulated prostaglandin E 9-ketoreductase activity from veins but not arteries. This may explain the finding that bradykinin induces the release of prostaglandin E compounds from arteries but prostaglandin F compounds from veins.  相似文献   

11.
Bradykinin is considered an important mediator of the inflammatory response in both the peripheral and the central nervous system and it has attracted recent interest as a potential mediator of brain injury following stroke. Bradykinin is recognized to play an important role in ischemic brain. We investigated the effect of bradykinin postconditioning on ischemic damage after 8 min of ischemia (four-vessel occlusion) and 3 days of reperfusion. Bradykinin was administered after 2 days of reperfusion at a dose of 150 μg/kg (i.p.). Catalase (CAT) activity was significantly increased in all examined regions (cortex, hippocampus and striatum) 3 days after 8 min of ischemia, but postconditioning decreased this activity below the control values. The total activity of superoxide dismutase (SOD) 3 days after ischemia was at control level with or without postconditioning. However, the analysis of individual SODs separately revealed interesting differences; while the activity of CuZnSOD was significantly decreased 3 days after ischemia, the activity of MnSOD was significantly increased compared to control levels. In both cases, postconditioning returned SOD activity to control levels. These findings are interesting because MnSOD is a mitochondrial enzyme and its activity in the cytosol suggests that a possible mechanism of protection provided by postconditioning could include prevention of release of mitochondrial proteins to the cytoplasm, resulting in protection against the mitochondrial pathway of apoptosis. 8 min of ischemia alone caused the degeneration of 52.37% neurons in the hippocampal CA1 region 3 days later. Bradykinin used as postconditioning 2 days after the same interval of ischemia enabled the survival of more than 97% of CA1 neurons. This study demonstrated that bradykinin postconditioning induces protection against ischemic brain injury and promotes neuronal survival.  相似文献   

12.
The distribution and properties of neutral peptidases acting on the peptide hormone bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) were determined in several rabbit tissues. The supernatant and particulate fractions prepared from tissue homogenates (25000g for 60min) were studied. Bradykinin inactivation (kininase activity) was measured by bioassay with the isolated guinea-pig ileum. The sites of peptide-bond cleavage were determined in the amino acid analyser, which permits detection and measurement of amino acids and peptides derived from bradykinin. The results indicate that kininases are present in a wide range of concentrations in different tissues, kidney and lung having the most activity. Kininases present in different tissues were distinguished on the basis of sensitivity to the effects of EDTA, dithiothreitol and ZnCl2 and by the site of peptide-bond hydrolysis in bradykinin.  相似文献   

13.
The effect of bradykinin on membrane properties of parasympathetic ganglion neurons in isolated guinea pig bronchial tissue was studied using intracellular recording techniques. Bradykinin (1-100 nM) caused a reversible membrane potential depolarization of ganglion neurons that was not associated with a change in input resistance. The selective bradykinin B(2) receptor antagonist HOE-140 inhibited bradykinin-induced membrane depolarizations. Furthermore, the cyclooxygenase inhibitor indomethacin attenuated bradykinin-induced membrane depolarizations to a similar magnitude ( approximately 70%) as HOE-140. However, neurokinin-1 and -3 receptor antagonists did not have similar inhibitory effects. The ability of bradykinin to directly alter active properties of parasympathetic ganglion neurons was also examined. Bradykinin (100 nM) significantly reduced the duration of the afterhyperpolarization (AHP) that followed four consecutive action potentials. The inhibitory effect of bradykinin on the AHP response was reversed by HOE-140 but not by indomethacin. These results indicate that bradykinin can stimulate airway parasympathetic ganglion neurons independent of sensory nerve activation and provide an alternative mechanism for regulating airway parasympathetic tone.  相似文献   

14.
The effects of bradykin on prostaglandin metabolism in canine mesenteric vessels were examined. Bradykinin stimulated microsomal prostaglandin synthesis in both artery and vein; this stimulation was more pronounced when [14C]phosphatidylcholine rather than [14C]arachidonate was used as the substrate for prostaglandin synthetase. This suggested that bradykinin enhanced a membrane phospholipase. In addition, bradykinin selectively stimulated prostaglandin E 9-ketoreductase activity from veins but not arteries. This may explain the finding that bradykinin induces the release of prostaglandin E compounds from arteries but prostaglandin F compounds from veins.  相似文献   

15.
In the rat, intra-arterial injection of bradykinin produces either hypotension associated with polypnea or excitation with polypnea and a biphasic cardiovascular response. Intra-arterial injection of PGE, produces similar effects. Bradykinin and PGE sensitize each other. Indomethacine abolishes all vascular responses induced by bradykinin, but fails to reduce them when bradykinin is injected simultaneously with low doses of PGE. It is concluded that stimulation of paravascular nociceptive receptors is wholly responsible for the reactions by intracarotid injection of bradykinin.  相似文献   

16.
Cardiac c-kit positive cells are cardiac-derived cells that exist within the heart and have a great many protective effects. The senescence of cardiac c-kit positive cells probably leads to cell dysfunction. Bradykinin plays a key role in cell protection. However, whether bradykinin prevents cardiac c-kit positive cells from high-glucose-induced senescence is unknown. Here, we found that glucose treatment causes the premature senescence of cardiac c-kit positive cells. Bradykinin B2 receptor (B2R) expression was declined by glucose-induced senescence. Bradykinin treatment inhibited senescence and reduced intracellular oxygen radicals according to senescence-associated β-galactosidase staining and 2′,7′-dichlorodihydrofluorescein diacetate staining. Moreover, the mitochondrial membrane potential was damaged, as measured by JC-1 staining. The mitochondrial membrane potential was preserved under bradykinin treatment. The concentration of superoxide was decreased, and the concentration of intracellular adenosine triphosphate was increased after bradykinin treatment. Western blot showed that bradykinin leads to AKT and mammalian target of rapamycin (mTOR) phosphorylation and decreased levels of P53 and P16 when compared with glucose treatment alone. Antagonists of B2R, phosphoinositide 3-kinase (PI3K), mTOR, and B2R small interfering RNA prevented the protective effect of bradykinin. P53 antagonist also inhibited the glucose-induced senescence of cardiac c-kit positive cells. In conclusion, bradykinin prevents the glucose-induced premature senescence of cardiac c-kit positive cells through the B2R/PI3K/AKT/mTOR/P53 signal pathways.  相似文献   

17.
Bradykinin potentiating factors from the venom of Bothrops jajaraca and Agkistrodon halys blomhoffii potentiate the action of bradykinin at several smooth muscles. This potentiation is specific for bradykinin and has to be distinguished from an unspecific potentiation. The potentiation induced by BPF is not due to an indirect cholinergic mechanism or to a kininase inhibition in vitro. The results suggest that there would be an allosteric transition of the bradykinin receptor.  相似文献   

18.
19.
Bradykinin is a peptide consisting of nine amino acids. It is a member of the kinin family, a class of molecules sometimes considered to be locally acting hormones. Bradykinin acts through cell surface receptors to elicit a series of biological responses, many of which have been well characterized at the whole organ or body level. However, little is known about the bradykinin receptor itself or its mechanisms of signal transduction, its function and its tissue distribution. Increasing evidence suggests that bradykinin is a member of a group of locally produced peptides which may act in a paracrine fashion as microenvironmental modulators of cell proliferation. Evidence for this derives from studies of the interaction between bradykinin and its receptor, receptor-effector coupling systems and in vitro studies of the biological effects of bradykinin. These areas, together with questions concerning the nature and number of different types of bradykinin receptors, form the main bulk of current interest in bradykinin research and are the subject of this review. The ability of bradykinin to synergize with other growth regulating ligands will also be considered.  相似文献   

20.
Bradykinin is a multifunctional mediator of inflammation believed to have a role in asthma, a disorder associated with remodeling of extracellular connective tissue. Using contraction of collagen gels as an in vitro model of wound contraction, we assessed the effects of bradykinin tissue on remodeling. Human fetal lung fibroblasts were embedded in type I collagen gels and cultured for 5 days. After release, the floating gels were cultured in the presence of bradykinin. Bradykinin significantly stimulated contraction in a concentration- and time-dependent manner. Coincubation with phosphoramidon augmented the effect of 10(-9) and 10(-8) M bradykinin. A B2 receptor antagonist attenuated the effect of bradykinin, whereas a B1 receptor antagonist had no effect, suggesting that the effect is mediated by the B2 receptor. An inhibitor of intracellular Ca2+ mobilization abolished the response; addition of EGTA to the culture medium attenuated the contraction of control gels but did not modulate the response to bradykinin. In contrast, the phospholipase C inhibitor U-73122 and the protein kinase C inhibitors staurosporine and GF-109203X attenuated the responses. These data suggest that by augmenting the contractility of fibroblasts, bradykinin may have an important role in remodeling of extracellular matrix that may result in tissue dysfunction in chronic inflammatory diseases, such as asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号