首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclophosphamide potentiates the antitumor activity of v-p97NY   总被引:1,自引:0,他引:1  
Previous work has demonstrated that a recombinant live vaccinia virus-based tumor vaccine, v-p97NY, induces an immune response in mice which can lead to the rejection of transfected lines of mouse melanoma cells expressing the human melanoma antigen p97 (S.-L. Hu et al., J. Virol. 62, 176, 1988; C. D. Estin et al., Proc. Natl. Acad. Sci. USA 85, 1052, 1988). We now show that the ability of v-p97NY to induce delayed-type hypersensitivity to p97 improved if the vaccinated mice were given cyclophosphamide (Cy) on the day of vaccination. Likewise, treatment of vaccinated mice with Cy increased the antitumor activity of vaccination so that tumor colony formation in the lungs was inhibited even when v-p9NY plus Cy was not given until 7 days after intravenous injection of tumor cells.  相似文献   

2.
从我国分离到的一株单纯疱疹病毒Ⅰ型(HSV-1-168株)病毒基因组中,分离出含有糖蛋白D(gD)基因的1.2kb片段,插入带有痘苗病毒天坛株TK区的质粒pJSB1175P7.5k启动子下游,转染无白血病鸡胚原代细胞,获得带有HSV-1-168gD基因的重组痘苗病毒。此株重组病毒在感染细胞膜上表达HSV-1-168gD糖蛋白抗原,能与特异性单克隆抗体反应。在感染细胞中表达的膜抗原经SDS-PAGE分析,表达分子量为54kD糖蛋白。用Southern杂交分析了重组病毒DNA中特异的gD基因,对作为活疫苗的重组痘苗病毒株进行了一些微生物学活性、免疫原性和毒力等方面的研究。  相似文献   

3.
Many characteristics of the putative protein encoded by varicella-zoster virus (VZV) open reading fram (ORF) 14 indicate that it is a glycoprotein, which has been designated gpV. To identify the protein products of the gene, the coding sequences were placed under the control of the vaccinia virus p7.5 promoter and recombinant vaccinia viruses were constructed. Heterogeneous polypeptides with molecular weights of 95,000 to 105,000 (95K to 105K polypeptides) were expressed in cells infected by a vaccinia virus recombinant (vKIP5) containing ORF 14 from VZV Scott but were not expressed by control vaccinia viruses. These polypeptides were recognized by antibodies present in human sera that contained high levels of anti-VZV antibodies. Conversely, antisera raised in rabbits inoculated with vKIP5 reacted specifically with heterogeneous 95K to 105K polypeptides present in VZV Scott-infected but not uninfected cells; these polypeptides show a patchy plasma membrane fluorescence pattern in VZV Scott-infected cells. These same antisera neutralized VZV strain Scott infectivity in the absence of complement. Endoglycosidase F treatment of isolated gpV polypeptides and tunicamycin treatment of cells infected with the vKIP5 recombinant indicated that the polypeptides were glycosylated. Three sets of data imply that the VZV strain Oka, which has been used to produce a live attenuated virus vaccine, accumulates low levels of gpV polypeptides relative to wild-type strains: (i) blocking of antibodies in human sera with excess VZV Oka-infected cell antigen yielded residual antibodies which were reactive with the 95K to 105K gpV polypeptides expressed in cells infected by VZV strain Scott and by the vKIP5 vaccinia virus recombinant, but not with Oka-infected cell polypeptides; (ii) antisera raised to vKIP5 detected very low levels of reactive polypeptides made in VZV Oka-infected cells and neutralized VZV Oka virus much less efficiently than VZV Scott; and (iii) comparisons of the reactivity of sera from live attenuated virus vaccine vaccinees with sera derived from patients recovering from wild-type infections indicated greatly reduced levels of gpV-specific antibodies in some vaccinees.  相似文献   

4.
Cytolytic T-lymphocyte (CTL) activity specific for respiratory syncytial (RS) virus was investigated after intranasal infection of mice with RS virus, after intraperitoneal infection of mice with a recombinant vaccinia virus expressing the F glycoprotein, and after intramuscular vaccination of mice with Formalin-inactivated RS virus or a chimeric glycoprotein, FG, expressed from a recombinant baculovirus. Spleen cell cultures from mice previously infected with live RS virus or the F-protein recombinant vaccinia virus had significant CTL activity after one cycle of in vitro restimulation with RS virus, and lytic activity was derived from a major histocompatibility complex-restricted, Lyt2.2+ (CD8+) subset. CTL activity was not restimulated in spleen cells from mice that received either the Formalin-inactivated RS virus or the purified glycoprotein, FG. The protein target structures for recognition by murine CD8+ CTL were identified by using target cells infected with recombinant vaccinia viruses that individually express seven structural proteins of RS virus. Quantitation of cytolytic activity against cells expressing each target structure suggested that 22K was the major target protein for CD8+ CTL, equivalent to recognition of cells infected with RS virus, followed by intermediate recognition of F or N, slight recognition of P, and no recognition of G, SH, or M. Repeated stimulation of murine CTL with RS virus resulted in outgrowth of CD4+ CTL which, over time, became the exclusive subset in culture. Murine CD4+ CTL were highly cytolytic for RS virus-infected cells, but they did not recognize target cells infected with any of the recombinant vaccinia viruses expressing the seven RS virus structural proteins. Finally, the CTL response in peripheral blood mononuclear cells of adult human volunteers was investigated. The detection of significant levels of RS virus-specific cytolytic activity in these cells was dependent on at least two restimulations with RS virus in vitro, and cytolytic activity was derived primarily from the CD4+ subset.  相似文献   

5.
Simian immunodeficiency virus (SIV) infection of rhesus macaques is a model for human immunodeficiency virus (HIV) infection in humans. Inactivated and modified live whole-virus vaccines have provided limited protective immunity against SIV in rhesus macaques. Because of safety concerns in the use of inactivated and live whole-virus vaccines, we evaluated the protective immunity of vaccinia virus recombinants expressing the surface glycoprotein (gp130) of SIVmac and subunit preparations of gp130 expressed in mammalian cells (CHO). Three groups of animals were immunized with recombinant SIV gp130. The first group received SIV gp130 purified from genetically engineered CHO cells (cSIVgp130), the second group was vaccinated with recombinant vaccinia virus expressing SIVmac gp130 (vSIVgp130), and the third group was first primed with vSIVgp130 and then given a booster immunization with cSIVgp130. Although anti-gp130 binding antibodies were elicited in all three groups, neutralizing antibodies were transient or undetectable. None of the immunized animals resisted intravenous challenge with a low dose of cell-free virus. However, the group primed with vSIVgp130 and then boosted with cSIVgp130 had the lowest antigen load (p27) compared with the other groups. The results of these studies suggest that immunization of humans with HIV type 1 surface glycoprotein may not provide protective immunity against virus infection.  相似文献   

6.
A replication-competent rhabdovirus-based vector expressing human immunodeficiency virus type 1 (HIV-1) Gag protein was characterized on human cell lines and analyzed for the induction of a cellular immune response in mice. We previously described a rabies virus (RV) vaccine strain-based vector expressing HIV-1 gp160. The recombinant RV was able to induce strong humoral and cellular immune responses against the HIV-1 envelope protein in mice (M. J. Schnell et al., Proc. Natl. Acad. Sci. USA 97:3544-3549, 2000; J. P. McGettigan et al., J. Virol. 75:4430-4434, 2001). Recent research suggests that the HIV-1 Gag protein is another important target for cell-mediated host immune defense. Here we show that HIV-1 Gag can efficiently be expressed by RV on both human and nonhuman cell lines. Infection of HeLa cells with recombinant RV expressing HIV-1 Gag resulted in efficient expression of HIV-1 precursor protein p55 as indicated by both immunostaining and Western blotting. Moreover, HIV-1 p24 antigen capture enzyme-linked immunosorbent assay and electron microscopy showed efficient release of HIV-1 virus-like particles in addition to bullet-shaped RV particles in the supernatants of the infected cells. To initially screen the immunogenicity of this new vaccine vector, BALB/c mice received a single vaccination with the recombinant RV expressing HIV-1 Gag. Immunized mice developed a vigorous CD8(+) cytotoxic T-lymphocyte response against HIV-1 Gag. In addition, 26.8% of CD8(+) T cells from mice immunized with RV expressing HIV-1 Gag produced gamma interferon after challenge with a recombinant vaccinia virus expressing HIV-1 Gag. These results further confirm and extend the potency of RV-based vectors as a potential HIV-1 vaccine.  相似文献   

7.
A human cytomegalovirus (HCMV) glycoprotein gene with homology to glycoprotein B (gB) of herpes simplex virus and Epstein-Barr virus and gpII of varicella zoster virus has been identified by nucleotide sequencing. The gene has been expressed in recombinant vaccinia virus and the gene product recognized by monoclonal antibodies and human immune sera. Rabbits immunized with the recombinant vaccinia virus produced antibodies that immunoprecipitate gB from HCMV-infected cells and neutralize HCMV infectivity in vitro. These data demonstrate a role for this protein in future HCMV vaccines.  相似文献   

8.
A cDNA fragment covering the genomic region that encodes the structural proteins of hog cholera virus (HCV) was inserted into the tk gene of vaccinia virus. Expression studies with vaccinia virus/HCV recombinants led to identification of HCV-specific proteins. The putative HCV core protein p23 was demonstrated for the first time by using an antiserum against a bacterial fusion protein. The glycoproteins expressed by vaccinia virus/HCV recombinant migrated on sodium dodecyl sulfate-gels identically to glycoproteins precipitated from HCV-infected cells. A disulfide-linked heterodimer between gp55 and gp33 previously detected in HCV-infected cells was also demonstrated after infection with the recombinant virus. The vaccinia virus system allowed us to identify, in addition to the heterodimer, a disulfide-linked homodimer of HCV gp55. The vaccinia virus/HCV recombinant that expressed all four structural proteins induced virus-neutralizing antibodies in mice and swine. After immunization of pigs with this recombinant virus, full protection against a lethal challenge with HCV was achieved. A construct that lacked most of the HCV gp55 gene failed to induce neutralizing antibodies but induced protective immunity.  相似文献   

9.
Recombinant vaccinia virus vectors were constructed which expressed the major surface glycoprotein G of human respiratory syncytial (RS) virus. The biological activity of the G protein expressed from these vectors was assayed. Inoculation of rabbits with live recombinant virus induced high titers of antibody which specifically immunoprecipitated RS virus G protein and was capable of neutralizing RS virus infectivity. Immunization of mice by either the intranasal or the intraperitoneal route with recombinant virus that expressed only the G protein resulted in complete protection of the lower respiratory tract upon subsequent challenge with live RS virus.  相似文献   

10.
The human cytomegalovirus (HCMV) envelope glycoprotein complex gp55-116 was expressed in both Escherichia coli and cells infected with a recombinant vaccinia virus. E. coli produced a single protein of Mr 100,000 which approximated the size of the nonglycosylated gp55-116 precursor found in HCMV-infected cells. Cells infected with the recombinant vaccinia virus contained three intracellular forms of Mr 160,000, 150,000, and 55,000 which were detected by a monoclonal antibody reactive with gp55. Comparison of the immunological properties of these recombinant proteins indicated that several of the HCMV gp55-116 monoclonal antibodies and sera from patients infected with HCMV reacted with the vaccinia virus-derived proteins whereas a more restricted group of monoclonal antibodies recognized the E. coli-produced protein. Immunization of mice with either E. coli or vaccinia virus recombinant HCMV gp55-116 resulted in production of virus-neutralizing antibodies. In contrast to the almost exclusive production of complement-dependent neutralizing antibodies following immunization with recombinant vaccinia virus, the E. coli-derived protein induced complement-independent neutralizing antibodies.  相似文献   

11.
An open reading frame with the characteristics of a glycoprotein-coding sequence was identified by nucleotide sequencing of human cytomegalovirus (HCMV) genomic DNA. The predicted amino acid sequence was homologous with glycoprotein H of herpes simplex virus type 1 and the homologous protein of Epstein-Barr virus (BXLF2 gene product) and varicella-zoster virus (gpIII). Recombinant vaccinia viruses that expressed this gene were constructed. A glycoprotein of approximately 86 kilodaltons was immunoprecipitated from cells infected with the recombinant viruses and from HCMV-infected cells with a monoclonal antibody that efficiently neutralized HCMV infectivity. In HCMV-infected MRC5 cells, this glycoprotein was present on nuclear and cytoplasmic membranes, but in recombinant vaccinia virus-infected cells it accumulated predominantly on the nuclear membrane.  相似文献   

12.
The viral antigens recognized by cytotoxic T cells (CTL) have not been defined in most viruses infecting mouse or man. Natural or artificial virus recombinants can be used to determine the antigen specificity of CTL directed against viruses with segmented genomes, such as influenza, but this technique is more difficult to apply to the study of unsegmented viruses. We describe here the use of recombinant vaccinia viruses, containing cDNA corresponding to either the nucleoprotein (N) gene or the major surface glycoprotein (G) gene of human respiratory syncytial virus (RSV), to examine the antigen specificity of anti-RSV cytotoxic T cells from humans and mice. The results demonstrate that the RSV N protein is one of the target antigens for CTL in man and mouse, whereas the G protein was not recognized and can at best represent a minor target antigen for CTL.  相似文献   

13.
We immunized mice with an attenuated (cold-adapted) influenza virus followed by an attenuated vaccinia virus (modified vaccinia virus Ankara), both expressing a CD8(+)-T-cell epitope derived from malaria sporozoites. This vaccination regimen elicited high levels of protection against malaria. This is the first time that the vaccine efficacy of a recombinant cold-adapted influenza virus vector expressing a foreign antigen has been evaluated.  相似文献   

14.
The glycoprotein VP7, the major serotype antigen of rotaviruses, is localized to the endoplasmic reticulum (ER) of the cell, where it is retained as a membrane-associated protein before assembly into mature virus particles. Wild-type VP7 expressed by a recombinant vaccinia virus was also located internally and was poorly antigenic. Using recombinant techniques, a correctly processed, secreted form of VP7 (S.C. Stirzaker and G.W. Both, Cell 56:741-747, 1989) was modified by addition to its C terminus of the membrane anchor and cytoplasmic domains from the influenza virus hemagglutinin. The hybrid protein was directed to the surface of cells, where it was anchored in the plasma membrane. When expressed in mice and rabbits by a recombinant vaccinia virus, the surface-anchored antigen stimulated a level of rotavirus-specific antibodies that was greater than 100-fold above the level induced by wild-type VP7. T-cell responses to the novel antigen were also elevated in comparison with the wild-type, intracellular protein. Cell surface anchoring may provide a strategy to increase the immunogenicity of intracellular antigens from other parasites and viruses.  相似文献   

15.
Glycoproteins gp50, gII, and gIII of pseudorabies virus (PRV) were expressed either individually or in combination by vaccinia virus recombinants. In vitro analysis by immunoprecipitation and immunofluorescence demonstrated the expression of a gII protein of approximately 120 kDa that was proteolytically processed to the gIIb (67- to 74-kDa) and gIIc (58-kDa) mature protein species similar to those observed in PRV-infected cells. Additionally, the proper expression of the 90-kDa gIII and 50-kDa gp50 was observed. All three of these PRV-derived glycoproteins were detectable on the surface of vaccinia virus-PRV recombinant-infected cells. In vivo, mice were protected against a virulent PRV challenge after immunization with the PRV glycoprotein-expressing vaccinia virus recombinants. The coexpression of gII and gIII by a single vaccinia virus recombinant resulted in a significantly reduced vaccination dose required to protect mice against PRV challenge. Inoculation of piglets with the various vaccinia virus-PRV glycoprotein recombinants also resulted in protection against virulent PRV challenge as measured by weight gain. The simultaneous expression of gII and gp50 in swine resulted in a significantly enhanced level of protection as evaluated by weight evolution following challenge with live PRV.  相似文献   

16.
High sequence variability in the envelope gene of human immunodeficiency virus has provoked interest in nonenvelope antigens as potential immunogens against retrovirus infection. However, the role of core protein antigens encoded by the gag gene in protective immunity against retroviruses is unclear. By using recombinant vaccinia viruses expressing the Friend murine leukemia helper virus (F-MuLV) gag gene, we could prime CD4+ T-helper cells and protectively immunize susceptible strains of mice against Friend retrovirus infection. Recovery from leukemic splenomegaly developed more slowly after immunization with vaccinia virus-F-MuLV gag than with vaccinia virus-F-MuLV env; however, genetic nonresponders to the envelope protein could be partially protected with Gag vaccines. Class switching of F-MuLV-neutralizing antibodies from immunoglobulin M to immunoglobulin G after challenge with Friend virus complex was facilitated in mice immunized with the Gag antigen. Sequential deletion of the gag gene revealed that the major protective epitope was located on the N-terminal hydrophobic protein p15.  相似文献   

17.
Cell surface expression of the human cytomegalovirus (HCMV) major envelope glycoprotein complex, gp55-116 (gB), was studied by using monoclonal antibodies and an HCMV gp55-116 (gB) recombinant vaccinia virus. HCMV-infected human fibroblasts and recombinant vaccinia virus-infected HeLa cells expresses three electrophoretically distinct proteins of Mr 170,000, 116,000, and 55,000 on their surface. These species have been previously identified within infected cells and purified virions. Two unique neutralizing epitopes were shown to be present on the cell surface gp55-116 (gB). Utilizing HeLa cells infected with the gp55-116 recombinant vaccinia virus as a specific immunosorbent, we have shown that approximately 40 to 70% of the total serum virus-neutralizing activity of a group of individuals with past HCMV infections was directed against this single envelope glycoprotein. The implications of this finding for vaccine development are discussed.  相似文献   

18.
Previously we showed that mice immunized with a vaccinia virus vector expressing the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) gene (vaccinia/gD) were protected against both lethal and latent infections with HSV-1 for at least 6 weeks after immunization (K. J. Cremer, M. Mackett, C. Wohlenberg, A. L. Notkins, and B. Moss, Science 228:737-740, 1985). In the experiments described here, we examined long-term immunity to HSV following vaccinia/gD vaccination, the effect of revaccination with vaccinia/gD, and the impact of previous immunity to vaccinia virus on immunization with the gD recombinant. Mice immunized with vaccinia/gD showed 100, 100, and 80% protection against lethal infection with HSV-1 at 18, 44, and 60 weeks postimmunization, respectively. Protection against latent trigeminal ganglionic infection was 70, 50, and 31% at 6, 41, and 60 weeks postvaccination, respectively. To study the effect of reimmunization on antibody levels, mice vaccinated with vaccinia/gD were given a second immunization (booster dose) 3 months after the first. These mice developed a 10-fold increase in neutralizing-antibody titer (221 to 2,934) and demonstrated a significant increase in protection against lethal HSV-1 challenge compared with animals that received only one dose of vaccinia/gD. To determine whether preexisting immunity to vaccinia virus inhibited the response to vaccination with vaccinia/gD virus, mice were immunized with a recombinant vaccinia virus vector expressing antigens from either influenza A or hepatitis B virus and were then immunized (2 to 3 months later) with vaccinia/gD. These mice showed reduced titers of neutralizing antibody to HSV-1 and decreased protection against both lethal and latent infections with HSV-1 compared with animals vaccinated only with vaccinia/gD. We conclude that vaccination with vaccinia/gD produces immunity against HSV-1 that lasts over 1 year and that this immunity can be increased by a booster but that prior immunization with a vaccinia recombinant virus expressing a non-HSV gene reduces the levels of neutralizing antibody and protective immunity against HSV-1 challenge.  相似文献   

19.
表达狂犬病毒糖蛋白的重组痘苗病毒的组建与鉴定   总被引:6,自引:0,他引:6  
林枫  侯云德 《病毒学报》1992,8(3):210-217
  相似文献   

20.
Computer-assisted analysis of the Epstein-Barr virus (EBV) open reading frame BILF2 (B95-8 nucleotides 150,525 to 149,782) predicts that it codes for a membrane-bound glycoprotein. [3H]glucosamine labeling of cells infected with vaccinia virus recombinants that expressed the BILF2 open reading frame revealed several diffuse species of glycoproteins of around 80,000 and 55,000 daltons. A monoclonal antibody derived from spleens of mice immunized with EBV immunoprecipitated the EBV-derived protein made by the vaccinia virus recombinants and also precipitated a late envelope glycoprotein with a mobility of 78,000 to 55,000 from EBV-producing cells. N-Glycanase treatment of the immunoprecipitated BILF2 product from EBV-producing cells resulted in a polypeptide of 28 kilodaltons, closely agreeing with the predicted molecular mass for the unmodified BILF2 gene product. Western (immuno-) blots using recombinant infected cells as a source of antigen showed that the majority of EBV-seropositive individuals have a serum antibody response to the BILF2-encoded gp78/55.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号