首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chalcone (CHS), stilbene (STS) synthases, and related proteins are key enzymes in the biosynthesis of many secondary plant products. Precursor feeding studies and mechanistic rationalization suggest that stilbenecarboxylates might also be synthesized by plant type III polyketide synthases; however, the enzyme activity leading to retention of the carboxyl moiety in a stilbene backbone has not yet been demonstrated. Hydrangea macrophylla L. (Garden Hortensia) contains stilbenecarboxylates (hydrangeic acid and lunularic acid) that are derived from 4-coumaroyl and dihydro-4-coumaroyl starter residues, respectively. We used homology-based techniques to clone CHS-related sequences, and the enzyme functions were investigated with recombinant proteins. Sequences for two proteins were obtained. One was identified as CHS. The other shared 65-70% identity with CHSs and other family members. The purified recombinant protein had stilbenecarboxylate synthase (STCS) activity with dihydro-4-coumaroyl-CoA, but not with 4-coumaroyl-CoA or other substrates. We propose that the enzyme is involved in the biosynthesis of lunularic acid. It is the first example of a STS-type reaction that does not lose the terminal carboxyl group during the ring folding to the end product. Comparisons with CHS, STS, and a pyrone synthase showed that it is the only enzyme exerting a tight control over decarboxylation reactions. The protein contains unusual residues in positions highly conserved in other CHS-related proteins, and mutagenesis studies suggest that they are important for the structure or/and the catalytic activity. The formation of the natural products in vivo requires a reducing step, and we discuss the possibility that the absence of a reductase in the in vitro reactions may be responsible for the failure to obtain stilbenecarboxylates from substrates like 4-coumaroyl-CoA.  相似文献   

3.
Tang Y  Koppisch AT  Khosla C 《Biochemistry》2004,43(29):9546-9555
Type II polyketide synthases (PKSs) synthesize polyfunctional aromatic polyketides through iterative condensations of malonyl extender units. The biosynthesis of most aromatic polyketides is initiated through an acetate unit derived from decarboxylation of malonyl-acyl carrier protein (ACP). Modification of this primer unit represents a powerful method of generating novel polyketides. We have demonstrated that recombination of the initiation module from the R1128 PKS with heterologous elongation modules afforded regioselectively modified polyketides containing alternative primer units. With the exception of the role of the acyltransferase homologue ZhuC, the catalytic cycle of the initiation module has been well explored. ZhuC, along with the ketosynthase III homologue ZhuH and the ACP(p) ZhuG, is essential for the in vivo biosynthesis of aromatic polyketides derived from non-acetate primer units. Here we have studied the role of ZhuC using PKS proteins reconstituted in vitro. We show that the tetracenomycin (tcm) minimal PKS can be directly primed with non-acetate acyl groups. In the presence of approximately 10 microM hexanoyl-ZhuG or approximately 100 microM hexanoyl-CoA, the tcm minimal PKS synthesized hexanoyl-primed analogues of octaketides SEK4 and SEK4b, as well as acetate-primed decaketides SEK15 and SEK15b at comparable levels. Addition of ZhuC abolished synthesis of the acetate-primed decaketides, resulting in exclusive synthesis of the hexanoyl-primed octaketides. In the absence of alternative acyl donors, ZhuC severely retarded the activity of the tcm minimal PKS. The editing capabilities of ZhuC were directly revealed by demonstrating that ZhuC has 100 times greater specificity for acetyl- and propionyl-ACP as compared to hexanoyl- and octanoyl-ACP. Thus, by purging the acetate primer units that otherwise dominate polyketide chain initiation, ZhuC (and presumably its homologues in other PKSs such as the doxorubicin and frenolicin PKSs) allows alternative primer units to be utilized by the elongation module in vivo. The abilities of other alkylacyl primer units to prime the tcm minimal PKS were also investigated in this report.  相似文献   

4.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

5.
Chalcone synthase (CHS) related type III plant polyketide synthases (PKSs) are likely to be involved in the biosynthesis of diarylheptanoids (e.g. curcumin and polycyclic phenylphenalenones), but no such activity has been reported. Root cultures from Wachendorfia thyrsiflora (Haemodoraceae) are a suitable source to search for such enzymes because they synthesize large amounts of phenylphenalenones, but no other products that are known to require CHSs or related enzymes (e.g. flavonoids or stilbenes). A homology-based RT-PCR strategy led to the identification of cDNAs for a type III PKS sharing only approximately 60% identity with typical CHSs. It was named WtPKS1 (W. thyrsiflora polyketide synthase 1). The purified recombinant protein accepted a large variety of aromatic and aliphatic starter CoA esters, including phenylpropionyl- and side-chain unsaturated phenylpropanoid-CoAs. The simplest model for the initial reaction in diarylheptanoid biosynthesis predicts a phenylpropanoid-CoA as starter and a single condensation reaction to a diketide. Benzalacetones, the expected release products, were observed only with unsaturated phenylpropanoid-CoAs, and the best results were obtained with 4-coumaroyl-CoA (80% of the products). With all other substrates, WtPKS1 performed two condensation reactions and released pyrones. We propose that WtPKS1 catalyses the first step in diarylheptanoid biosynthesis and that the observed pyrones are derailment products in the absence of downstream processing proteins.  相似文献   

6.
Stilbene and chalcone synthases are related polyketide synthases which use the same substrates but form different products. The environment of the condensing active site cysteine is highly conserved, except for the positions -2 and -3. All chalcone synthases contain Gln-Gln and prefer 4-coumaroyl-CoA as starter CoA ester, while the two known stilbene synthases contain Gln-His or His-Gln (preference phenylpropionyl-CoA and 4-coumaroyl-CoA, respectively). We investigated whether the presence and/or position of the histidine influences the substrate preference and the product specificity (stilbene or chalcone). The two amino acid motifs in the chalcone synthase from Pinus sylvestris (Gln-Gln) and in the stilbene synthases from P. sylvestris (Gln-His) and Arachis hypogaea (His-Gln) were changed by site-directed mutagenesis into all sequence combinations as found in the natural enzymes. Assays with the mutant proteins showed that the histidine does not determine the product specificity. With the chalcone and the stilbene synthase from P. sylvestris, any sequence deviation reduced the activity without marked effects on the substrate preference. The stilbene synthase from A. hypogaea was different. The change from His-Gln to Gln-His abolished enzyme activity almost completely with all three substrates. The change to Gln-Gln selectively reduced the activity with 4-coumaroyl-CoA, and the kinetic analysis indicated a slight increase in Km and a 3-fold reduction of Vmax, when compared with the parent enzyme. This converted the enzyme from a resveratrol-forming into a dihydropinosylvin-forming stilbene synthase.  相似文献   

7.
The hydratase-aldolase-catalyzed conversion of trans-o-hydroxybenzylidenepyruvate to salicylaldehyde and pyruvate is an intermediate reaction in the conversion of naphthalene to salicylate by bacteria. Here, a variety of aromatic aldehydes and some nonaromatic aldehydes together with pyruvate have been shown to be substrates for aldol condensations catalyzed by this enzyme in extracts of the recombinant strain Escherichia coli JM109(pRE701). Some of the products of these reactions were also compared as substrates in the opposite (hydration-aldol cleavage) reaction.  相似文献   

8.
The hydratase-aldolase-catalyzed conversion of trans-o-hydroxybenzylidenepyruvate to salicylaldehyde and pyruvate is an intermediate reaction in the conversion of naphthalene to salicylate by bacteria. Here, a variety of aromatic aldehydes and some nonaromatic aldehydes together with pyruvate have been shown to be substrates for aldol condensations catalyzed by this enzyme in extracts of the recombinant strain Escherichia coli JM109(pRE701). Some of the products of these reactions were also compared as substrates in the opposite (hydration-aldol cleavage) reaction.  相似文献   

9.
The enzyme 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL), which catalyzes a hydration and two-carbon cleavage step in the degradation of 4-hydroxycinnamic acids, has been purified and characterized from Pseudomonas fluorescens strain AN103. The enzyme is a homodimer and is active with three closely related substrates, 4-coumaroyl-CoA, caffeoyl-CoA, and feruloyl-CoA (Km values: 5.2, 1.6, and 2.4 microM, respectively), but not with cinnamoyl-CoA or with sinapinoyl-CoA. The abundance of the enzyme reflects a low catalytic center activity (2.3 molecules s-1 at 30 degrees C; 4-coumaroyl-CoA as substrate).  相似文献   

10.
Korman TP  Tan YH  Wong J  Luo R  Tsai SC 《Biochemistry》2008,47(7):1837-1847
Type II polyketides are a class of natural products that include pharmaceutically important aromatic compounds such as the antibiotic tetracycline and antitumor compound doxorubicin. The type II polyketide synthase (PKS) is a complex consisting of 5-10 standalone domains homologous to fatty acid synthase (FAS). Polyketide ketoreductase (KR) provides regio- and stereochemical diversity during the reduction. How the type II polyketide KR specifically reduces only the C9 carbonyl group is not well understood. The cocrystal structures of actinorhodin polyketide ketoreductase (actKR) bound with NADPH or NADP+ and the inhibitor emodin were solved with the wild type and P94L mutant of actKR, revealing the first observation of a bent p-quinone in an enzyme active site. Molecular dynamics simulation help explain the origin of the bent geometry. Extensive screening for in vitro substrates shows that unlike FAS KR, the actKR prefers bicyclic substrates. Inhibition kinetics indicate that actKR follows an ordered Bi Bi mechanism. Together with docking simulations that identified a potential phosphopantetheine binding groove, the structural and functional studies reveal that the C9 specificity is a result of active site geometry and substrate ring constraints. The results lay the foundation for the design of novel aromatic polyketide natural products with different reduction patterns.  相似文献   

11.
Pyrophen, a novel 4-methoxy-2-pyrone derivative of L-phenylalanine isolated from cultures of Aspergillus niger, crystallizes in the orthorhombic space group P2(1)2(1)2(1), with a = 8.918(1), b = 9.199(3), and c = 18.092(4) A. The structure was solved by direct methods and the absolute configuration assigned by the Bijvoet method. Refinement gave R = 0.045 and S = 1.78 for 1677 reflections with I greater than 3 sigma (I). Though numerous other pyrone natural products are known, including other products of A. niger, this is the first report of an amino acid-pyrone derivative.  相似文献   

12.
13.
Polyketides are a diverse class of molecules sought after for their valuable properties, including as potential pharmaceuticals. Previously, we demonstrated that the oleaginous yeast Yarrowia lipolytica is an optimal host for production of the simple polyketide, triacetic acid lactone (TAL). We here expand the capacities of this host by overcoming previous media challenges and enabling production of more complex polyketides. Specifically, we employ a β-oxidation related strategy to improve polyketide production directly from defined media. Beyond TAL production, we establish biosynthesis of the 4-coumaroyl-CoA derived polyketides: naringenin, resveratrol, and bisdemethoxycurcumin, as well as the diketide intermediate, (E)-5-(4-hydroxyphenyl)-3-oxopent-4-enoic acid. In this background, we enable high-level de novo production of naringenin through import of both a heterologous pathway and a mutant Y. lipolytica allele. In doing so, we generated an averaged maximum titer of 898 mg/L naringenin, the highest titer reported to date in any host. These results demonstrate that Y. lipolytica is an ideal polyketide production host for more complex 4-coumaroyl-CoA derived products.  相似文献   

14.
Chalcone synthase and stilbene synthase are plant-specific polyketide synthases. They catalyze three common consecutive decarboxylative condensations and specific cyclization reactions. They are highly homologous to each other, and are likely to fall into a family of polyketide synthases along with acridone synthase and bibenzyl synthase. Two cDNA clones (named HmC and HmS), both of which show high homology to the known chalcone synthases, were obtained from leaves of Hydrangea macrophylla var. thunbergii. They were expressed in Escherichia coli in order to determine their enzyme functions. Detection of chalcone formation clearly indicated that HmC encoded chalcone synthase, while HmS protein catalyzed the formation of neither chalcone nor stilbene. However, a novel pyrone, a lactonization product of a linear tetraketide was detected in reaction products of HmS protein. This proves that HmS encodes a novel polyketide synthase that catalyzes only chain elongation without cyclization.  相似文献   

15.
Benzalacetone synthase (BSA) is a novel plant-specific polyketide synthase that catalyzes a one step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 skeleton of phenylbutanoids in higher plants. A cDNA encoding BAS was for the first time cloned and sequenced from rhubarb (Rheum palmatum), a medicinal plant rich in phenylbutanoids including pharmaceutically important phenylbutanone glucoside, lindleyin. The cDNA encoded a 42-kDa protein that shares 60-75% amino-acid sequence identity with other members of the CHS-superfamily enzymes. Interestingly, R. palmatum BAS lacks the active-site Phe215 residue (numbering in CHS) which has been proposed to help orient substrates and intermediates during the sequential condensation of 4-coumaroyl-CoA with malonyl-CoA in CHS. On the other hand, the catalytic cysteine-histidine dyad (Cys164-His303) in CHS is well conserved in BAS. A recombinant enzyme expressed in Escherichia coli efficiently afforded benzalacetone as a single product from 4-coumaroyl-CoA and malonyl-CoA. Further, in contrast with CHS that showed broad substrate specificity toward aliphatic CoA esters, BAS did not accept hexanoyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA as a substrate. Finally, besides the phenylbutanones in rhubarb, BAS has been proposed to play a crucial role for the construction of the C6-C4 moiety of a variety of natural products such as medicinally important gingerols in ginger plant.  相似文献   

16.
Microsomal preparations from parsley cell suspension cultures challenged with an elicitor from Phytophthora megasperma f.sp. glycinea (Pmg) catalyze the formation of trans-5-O-caffeoylshikimate from trans-5-O-(4-coumaroyl)shikimate. Neither the cis isomer nor free 4-coumarate, 4-coumaroyl-CoA, or 5-O-(4-coumaroyl)quinate are substrates for this enzyme. The reaction is strictly dependent on NADPH as a reducing cofactor and on molecular oxygen. NADH, ascorbic acid, and 6,7-dimethyl-5,6,7,8-tetrahydropterine cannot substitute for NADPH. However, NADH enhances enzyme activity observed in the presence of NADPH. Cytochrome c and carbon monoxide inhibit the hydroxylation reaction, suggesting a cytochrome P-450-dependent mixed-function monooxygenase.  相似文献   

17.
A cDNA encoding a novel plant type III polyketide synthase was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae). The deduced amino acid sequence of Hu. serrata polyketide synthase 1 showed 44-66% identity to those of other chalcone synthase superfamily enzymes of plant origin. Further, phylogenetic tree analysis revealed that Hu. serrata polyketide synthase 1 groups with other nonchalcone-producing type III polyketide synthases. Indeed, a recombinant enzyme expressed in Escherichia coli showed unusually versatile catalytic potential to produce various aromatic tetraketides, including chalcones, benzophenones, phloroglucinols, and acridones. In particular, it is remarkable that the enzyme accepted bulky starter substrates such as 4-methoxycinnamoyl-CoA and N-methylanthraniloyl-CoA, and carried out three condensations with malonyl-CoA to produce 4-methoxy-2',4',6'-trihydroxychalcone and 1,3-dihydroxy-N-methylacridone, respectively. In contrast, regular chalcone synthase does not accept these bulky substrates, suggesting that the enzyme has a larger starter substrate-binding pocket at the active site. Although acridone alkaloids have not been isolated from Hu. serrata, this is the first demonstration of the enzymatic production of acridone by a type III polyketide synthase from a non-Rutaceae plant. Interestingly, Hu. serrata polyketide synthase 1 lacks most of the consensus active site sequences with acridone synthase from Ruta graveolens (Rutaceae).  相似文献   

18.
19.
Fungal aromatic polyketides constitute a large family of bioactive natural products and are synthesized by the non-reducing group of iterative polyketide synthases (PKSs). Their diverse structures arise from selective enzymatic modifications of reactive, enzyme-bound poly-β-keto intermediates. How iterative PKSs control starter unit selection, polyketide chain initiation and elongation, intermediate folding and cyclization, selective redox or modification reactions during assembly, and product release are central mechanistic questions underlying iterative catalysis. This Review highlights recent insights into these questions, with a particular focus on the biosynthetic programming of fungal aromatic polyketides, and draws comparisons with the allied biosynthetic processes in bacteria.  相似文献   

20.
Lactobacillus reuteri 121 uses the glucosyltransferase A (GTFA) enzyme to convert sucrose into large amounts of the α-d-glucan reuteran, an exopolysaccharide. Upstream of gtfA lies another putative glucansucrase gene, designated gtfB. Previously, we have shown that the purified recombinant GTFB protein/enzyme is inactive with sucrose. Various homologs of gtfB are present in other Lactobacillus strains, including the L. reuteri type strain, DSM 20016, the genome sequence of which is available. Here we report that GTFB is a novel α-glucanotransferase enzyme with disproportionating (cleaving α1→4 and synthesizing α1→6 and α1→4 glycosidic linkages) and α1→6 polymerizing types of activity on maltotetraose and larger maltooligosaccharide substrates (in short, it is a 4,6-α-glucanotransferase). Characterization of the types of compounds synthesized from maltoheptaose by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), methylation analysis, and 1-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy revealed that only linear products were made and that with increasing degrees of polymerization (DP), more α1→6 glycosidic linkages were introduced into the final products, ranging from 18% in the incubation mixture to 33% in an enriched fraction. In view of its primary structure, GTFB clearly is a member of the glycoside hydrolase 70 (GH70) family, comprising enzymes with a permuted (β/α)8 barrel that use sucrose to synthesize α-d-glucan polymers. The GTFB enzyme reaction and product specificities, however, are novel for the GH70 family, resembling those of the GH13 α-amylase type of enzymes in using maltooligosaccharides as substrates but differing in introducing a series of α1→6 glycosidic linkages into linear oligosaccharide products. We conclude that GTFB represents a novel evolutionary intermediate between the GH13 and GH70 enzyme families, and we speculate about its origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号