首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent development in DNA microarray technologies has made the reconstruction of gene regulatory networks (GRNs) feasible. To infer the overall structure of a GRN, there is a need to find out how the expression of each gene can be affected by the others. Many existing approaches to reconstructing GRNs are developed to generate hypotheses about the presence or absence of interactions between genes so that laboratory experiments can be performed afterwards for verification. Since, they are not intended to be used to predict if a gene in an unseen sample has any interactions with other genes, statistical verification of the reliability of the discovered interactions can be difficult. Furthermore, since the temporal ordering of the data is not taken into consideration, the directionality of regulation cannot be established using these existing techniques. To tackle these problems, we propose a data mining technique here. This technique makes use of a probabilistic inference approach to uncover interesting dependency relationships in noisy, high-dimensional time series expression data. It is not only able to determine if a gene is dependent on another but also whether or not it is activated or inhibited. In addition, it can predict how a gene would be affected by other genes even in unseen samples. For performance evaluation, the proposed technique has been tested with real expression data. Experimental results show that it can be very effective. The discovered dependency relationships can reveal gene regulatory relationships that could be used to infer the structures of GRNs.  相似文献   

2.
Kim S  Imoto S  Miyano S 《Bio Systems》2004,75(1-3):57-65
We propose a dynamic Bayesian network and nonparametric regression model for constructing a gene network from time series microarray gene expression data. The proposed method can overcome a shortcoming of the Bayesian network model in the sense of the construction of cyclic regulations. The proposed method can analyze the microarray data as a continuous data and can capture even nonlinear relations among genes. It can be expected that this model will give a deeper insight into complicated biological systems. We also derive a new criterion for evaluating an estimated network from Bayes approach. We conduct Monte Carlo experiments to examine the effectiveness of the proposed method. We also demonstrate the proposed method through the analysis of the Saccharomyces cerevisiae gene expression data.  相似文献   

3.
4.
5.
6.
Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.  相似文献   

7.
Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as DBNs can construct cyclic regulations using time delay information. In this paper, a general framework for DBN modelling is outlined. Both discrete and continuous DBN models are constructed systematically and criteria for learning network structures are introduced from a Bayesian statistical viewpoint. This paper reviews the applications of DBNs over the past years. Real data applications for Saccharomyces cerevisiae time series gene expression data are also shown.  相似文献   

8.
MOTIVATION: Methods available for the inference of genetic regulatory networks strive to produce a single network, usually by optimizing some quantity to fit the experimental observations. In this article we investigate the possibility that multiple networks can be inferred, all resulting in similar dynamics. This idea is motivated by theoretical work which suggests that biological networks are robust and adaptable to change, and that the overall behavior of a genetic regulatory network might be captured in terms of dynamical basins of attraction. RESULTS: We have developed and implemented a method for inferring genetic regulatory networks for time series microarray data. Our method first clusters and discretizes the gene expression data using k-means and support vector regression. We then enumerate Boolean activation-inhibition networks to match the discretized data. Finally, the dynamics of the Boolean networks are examined. We have tested our method on two immunology microarray datasets: an IL-2-stimulated T cell response dataset and a LPS-stimulated macrophage response dataset. In both cases, we discovered that many networks matched the data, and that most of these networks had similar dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

9.
Analyzing time series gene expression data   总被引:7,自引:0,他引:7  
MOTIVATION: Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. However, when analyzing these experiments researchers face many new computational challenges. Algorithms that are specifically designed for time series experiments are required so that we can take advantage of their unique features (such as the ability to infer causality from the temporal response pattern) and address the unique problems they raise (e.g. handling the different non-uniform sampling rates). RESULTS: We present a comprehensive review of the current research in time series expression data analysis. We divide the computational challenges into four analysis levels: experimental design, data analysis, pattern recognition and networks. For each of these levels, we discuss computational and biological problems at that level and point out some of the methods that have been proposed to deal with these issues. Many open problems in all these levels are discussed. This review is intended to serve as both, a point of reference for experimental biologists looking for practical solutions for analyzing their data, and a starting point for computer scientists interested in working on the computational problems related to time series expression analysis.  相似文献   

10.
11.
12.

Background  

Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult.  相似文献   

13.
14.
Recent experimental advances facilitate the collection of time series data that indicate which genes in a cell are expressed. This information can be used to understand the genetic regulatory network that generates the data. Typically, Bayesian analysis approaches are applied which neglect the time series nature of the experimental data, have difficulty in determining the direction of causality, and do not perform well on networks with tight feedback. To address these problems, this paper presents a method to learn genetic network connectivity which exploits the time series nature of experimental data to achieve better causal predictions. This method first breaks up the data into bins. Next, it determines an initial set of potential influence vectors for each gene based upon the probability of the gene's expression increasing in the next time step. These vectors are then combined to form new vectors with better scores. Finally, these influence vectors are competed against each other to determine the final influence vector for each gene. The result is a directed graph representation of the genetic network's repression and activation connections. Results are reported for several synthetic networks with tight feedback showing significant improvements in recall and runtime over Yu's dynamic Bayesian approach. Promising preliminary results are also reported for an analysis of experimental data for genes involved in the yeast cell cycle.  相似文献   

15.
16.
17.
18.
Deciphering gene expression regulatory networks   总被引:11,自引:0,他引:11  
  相似文献   

19.
MOTIVATION: Time series expression experiments are an increasingly popular method for studying a wide range of biological systems. Here we developed an algorithm that can infer the local network of gene-gene interactions surrounding a gene of interest. This is achieved by a perturbation of the gene of interest and subsequently measuring the gene expression profiles at multiple time points. We applied this algorithm to computer simulated data and to experimental data on a nine gene network in Escherichia coli. RESULTS: In this paper we show that it is possible to recover the gene regulatory network from a time series data of gene expression following a perturbation to the cell. We show this both on simulated data and on a nine gene subnetwork part of the DNA-damage response pathway (SOS pathway) in the bacteria E. coli. CONTACT: dibernardo@tigem.it SUPLEMENTARY INFORMATION: Supplementary data are available at http://dibernado.tigem.it  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号