首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WASP family proteins activate nucleation by the Arp2/3 complex, inducing rapid actin polymerization in vitro. Although the C-terminal portion of WASP family proteins (VCA) activates nucleation by the Arp2/3 complex in pure systems, we find that this fragment lacks activity in cell extracts. Thus, polystyrene beads coated with VCA did not move in brain cytosol, while beads coated with N-WASP or WAVE2 did move. The basic clusters between the WH1 domain and the CRIB domain of N-WASP were critical for movement since beads coated with N-WASP or WAVE2 constructs missing the basic clusters (Delta basic) also did not move. Furthermore, VCA and N-WASP/WAVE2 Delta basic constructs were much less able than wild-type N-WASP and WAVE2 to induce actin polymerization in cytosol. All of the proteins, with or without the basic domain, were potent activators of nucleation by purified Arp2/3 complex.  相似文献   

2.
Wiskott-Aldrich syndrome protein (WASP) and neural (N)-WASP regulate dynamic actin structures through the ability of their VCA domains to bind to and stimulate the actin nucleating activity of the Arp2/3 complex. Here we identify two phosphorylation sites in the VCA domain of WASP at serines 483 and 484. S483 and S484 are substrates for casein kinase 2 in vitro and in vivo. Phosphorylation of these residues increases the affinity of the VCA domain for the Arp2/3 complex 7-fold and is required for efficient in vitro actin polymerization by the full-length WASP molecule. We propose that constitutive VCA domain phosphorylation is required for optimal stimulation of the Arp2/3 complex by WASP.  相似文献   

3.
WAVE2 is a member of the WASP/WAVE family of protein effectors of actin reorganization and cell movement. In this report, we demonstrate that WAVE2 overexpression induces serum response element (SRE) activation through serum response factor. A WAVE2 mutant lacking the VCA region did not induce SRE activation and actin polymerization. WAVE2-induced SRE activation was blocked by exposure of cells to Latrunculin A, or overexpression of actin mutant R62D. The DeltaVCA mutant inhibited Rac V12-induced SRE activation, suggesting that WAVE2 lies downstream of Rac. Similar deletion of the VCA domain of WASP attenuated Cdc42 V12-mediated SRE activation, suggesting that WAVE2 acts in relation to Rac as WASP acts in relation to Cdc42. WAVE2 overexpression did not activate NF-kappaB.  相似文献   

4.
Wiskott-Aldrich syndrome proteins (WASP) are a family of proteins that all catalyze actin filament branching with the Arp2/3 complex in a variety of actin-based motile processes. The constitutively active C-terminal domain, called VCA, harbors one or more WASP homology 2 (WH2) domains that bind G-actin, whereas the CA extension binds the Arp2/3 complex. The VCA·actin·Arp2/3 entity associates with a mother filament to form a branched junction from which a daughter filament is initiated. The number and function of WH2-bound actin(s) in the branching process are not known, and the stoichiometry of the VCA·actin·Arp2/3 complex is debated. We have expressed the tandem WH2 repeats of N-WASP, either alone (V) or associated with the C (VC) and CA (VCA) extensions. We analyzed the structure of actin in complex with V, VC, and VCA using protein crystallography and hydrodynamic and spectrofluorimetric methods. The partial crystal structure of the VC·actin 1:1 complex shows two actins in the asymmetric unit with extensive actin-actin contacts. In solution, each of the two WH2 domains in V, VC, and VCA binds G-actin in 1:2 complexes that participate in barbed end assembly. V, VC, and VCA enhance barbed end depolymerization like profilin but neither nucleate nor sever filaments, in contrast with other WH2 repeats. VCA binds the Arp2/3 complex in a 1:1 complex even in the presence of a large excess of VCA. VCA·Arp2/3 binds one actin in a latrunculin A-sensitive fashion, in a 1:1:1 complex, indicating that binding of the second actin to VCA is weakened in the ternary complex.  相似文献   

5.
Members of the Wiskott-Aldrich syndrome protein (WASP) family link Rho GTPase signaling pathways to the cytoskeleton through a multiprotein assembly called Arp2/3 complex. The C-terminal VCA regions (verprolin-homology, central hydrophobic, and acidic regions) of WASP and its relatives stimulate Arp2/3 complex to nucleate actin filament branches. Here we show by differential line broadening in NMR spectra that the C (central) and A (acidic) segments of VCA domains from WASP, N-WASP and Scar bind Arp2/3 complex. The C regions of these proteins have a conserved sequence motif consisting of hydrophobic residues and an arginine residue. Point mutations in this conserved sequence motif suggest that it forms an amphipathic helix that is required in biochemical assays for activation of Arp2/3 complex. Key residues in this motif are buried through contacts with the GTPase binding domain in the autoinhibited structure of WASP and N-WASP, indicating that sequestration of these residues is an important aspect of autoinhibition.  相似文献   

6.
M Buck  W Xu  M K Rosen 《Biochemistry》2001,40(47):14115-14122
The Cdc42 GTPase, a member of the Rho subfamily of Ras proteins, can signal to the cytoskeleton through its effector, the Wiskott-Aldrich syndrome protein (WASP), activation of which results in localized polymerization of new actin filaments. NMR structures of WASP peptide models in the Cdc42-bound and free states suggest that GTPase binding weakens autoinhibitory contacts between the GTPase binding domain (GBD) and the C-terminal actin regulatory (VCA) region of the protein. In the study presented here, amide hydrogen exchange has been used with NMR spectroscopy to directly examine destabilization of the autoinhibited GBD-VCA conformation caused by GTPase binding. A truncated protein, GBD-C, which models autoinhibited WASP, folds into a highly stable conformation with amide exchange protection factors of up to 3 x 10(6). A novel hydrogen exchange labeling-quench strategy, employing a high-affinity ligand to displace Cdc42 from WASP, was used to examine the amide exchange from the Cdc42-bound state of GBD-C. The GTPase increases exchange rates of the most protected amides by 50-500-fold, with destabilization reducing the differences in the protection of segments in the free state. The results confirm that Cdc42 facilitates the physical separation of the GBD from the VCA in a tethered molecule, indicating this process likely plays an important role in activation of full-length WASP by the GTPase. However, destabilization of GBD-C is not complete in the Cdc42 complex. The data indicate that partitioning of free energy between binding and activation may limit the extent to which GTPases can cause conformational change in effectors. This notion is consistent with the requirement of multiple input signals in order to achieve maximal activation in many effector molecules.  相似文献   

7.
Regulation of actin dynamics by WASP family proteins   总被引:10,自引:0,他引:10  
Rapid reorganization of the actin cytoskeleton underlies morphological changes and motility of cells. WASP family proteins have received a great deal of attention as the signal-regulated molecular switches that initiate actin polymerization. The first member, WASP, was identified as the product of a gene of which dysfunction causes the human hereditary disease Wiskott-Aldrich syndrome. There are now five members in this protein family, namely WASP, N-WASP, WAVE/Scar1, 2, and 3. WASP and N-WASP have functional and physical associations with Cdc42, a Rho family small GTPase involved in filopodium formation. In contrast, there is evidence that links the WAVE/Scar proteins with another Rho family protein, Rac, which is a regulator of membrane ruffling. All WASP family members have a VCA domain at the C-terminus through which Arp2/3 complex is activated to nucleate actin polymerization. Analyses of model organisms have just begun to reveal unexpected functions of WASP family proteins in multicellular organisms.  相似文献   

8.
9.
The WASP and cortactin families constitute two distinct classes of Arp2/3 modulators in mammalian cells. Physical and functional interactions among the Arp2/3 complex, VCA (a functional domain of N-WASP), and cortactin were examined under conditions that were with or without actin polymerization. In the absence of actin, cortactin binds significantly weaker to the Arp2/3 complex than VCA. At concentrations of VCA 20-fold lower than cortactin, the association of cortactin with the Arp2/3 complex was nearly abolished. Analysis of the cells infected with Shigella demonstrated that N-WASP located at the tip of the bacterium, whereas cortactin accumulated in the comet tail. Interestingly, cortactin promotes Arp2/3 complex-mediated actin polymerization and actin branching in the presence of VCA at a saturating concentration, and cortactin acquired 20 nm affinity for the Arp2/3 complex during actin polymerization. The interaction of VCA with the Arp2/3 complex was reduced in the presence of both cortactin and actin. Moreover, VCA reduced its affinity for Arp2/3 complex at branching sites that were stabilized by phalloidin. These data imply a novel mechanism for the de novo assembly of a branched actin network that involves a coordinated sequential interaction of N-WASP and cortactin with the Arp2/3 complex.  相似文献   

10.
The incomplete P elements TP5 and TP6 are inserted in the TAS repeats near the left telomere of the Drosophila melanogaster X chromosome. These telomeric P elements repress P-induced gonadal dysgenesis and germ-line hypermutability in both sexes. However, their capacity to repress hypermutability is lost when they are transmitted patroclinously in a cross. TP5 and TP6 do not repress P-element activity in somatic cells, nor do they alter the somatic or germ-line phenotypes of P-insertion alleles. In the germ line, these elements suppress the phenotype of a P-insertion allele of the singed gene that is evoked by other P elements, presumably because these other elements encode repressor polypeptides. This suppression is more effective when the telomeric P elements are inherited maternally. Regulation by telomeric P elements parallels that of the P cytotype, a state that represses P-element activity in some strains of Drosophila. This state exists only in the germ line and is maternally transmitted along with the P elements themselves. Regulation by known repressor P polypeptides is not restricted to the germ line and does not require maternal transmission of the relevant P elements. Regulation by telomeric P elements appears to be epistatic to regulation by repressor P polypeptides.  相似文献   

11.
A 32-bp deletion in CCR5 (CCR5 Delta 32) confers to PBMC resistance to HIV-1 isolates that use CCR5 as a coreceptor. To study this mutation in T cell development, we have screened 571 human thymus tissues for the mutation. We identified 72 thymuses (12.6%) that were heterozygous and 2 (0.35%) that were homozygous for the CCR5 Delta 32 mutation. We found that thymocyte development was normal in both CCR5 Delta 32 heterozygous and homozygous thymuses. In 3% of thymuses we identified a functional polymorphism of CD45RA, in which cortical and medullary thymocytes failed to down-regulate the 200- and 220-kDa CD45RA isoforms during T cell development. Moreover, we found an association of this CD45 functional polymorphism in thymuses with the CCR5 Delta 32 mutation (p = 0.00258). In vitro HIV-1 infection assays with CCR5-using primary isolates demonstrated that thymocytes with the heterozygous CCR5 Delta 32 mutation produced less p24 than did CCR5 wild-type thymocytes. However, the functional CD45RA polymorphism did not alter the susceptibility of thymocytes to HIV-1 infection. Taken together, these data demonstrate association of the CCR5 Delta 32 mutation with a polymorphism in an as yet unknown gene that is responsible for the ability to down-regulate the expression of high m.w. CD45RA isoforms. Although the presence of the CCR5 Delta 32 mutation down-regulates HIV-1 infection of thymocytes, the functional CD45RA polymorphism does not alter the susceptibility of thymocytes to HIV-1 infection in vitro.  相似文献   

12.
Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.  相似文献   

13.
Wiskott-Aldrich syndrome (WAS) is an inherited immune deficiency that is marked by eczema, bleeding and recurrent infections. The lymphocytes and platelets of WAS patients display cytoskeletal abnormalities, and their T lymphocytes show a diminished proliferative response to stimulation through the T-cell receptor-CD3 complex (TCR-CD3). The product of the WAS gene, WAS protein (WASP), binds to the small GTPase Cdc42. Small GTPases of the Rho family are crucial for the regulation of the actin-based cytoskeleton. WASP and its relative NWASP might play an important role in regulating the actin cytoskeleton. Since both WASP and NWASP have the potential to bind to multiple proteins, they might serve as a hub to coordinate the redistribution of many cellular signals to the actin cytoskeleton. In this review, the authors discuss the possible role of WASP/NWASP and of the newly described protein WIP, which interacts with WASP and NWASP, in coupling signals from the T-cell receptor to the actin-based cytoskeleton.  相似文献   

14.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y-->D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.  相似文献   

15.
Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP. To test whether N-WASP can compensate for the loss of WASP and restore actin cytoskeleton integrity, N-WASP was overexpressed in macrophages, in which endogenous WASP expression was reduced by short hairpin RNA (shWASP cells). Many of the defects associated with the loss of WASP, such as podosome-dependent matrix degradation and chemotaxis were corrected when N-WASP was expressed at equimolar level to that of the wild-type WASP. Furthermore, the ability of N-WASP to partially compensate for the loss of WASP may be physiologically relevant since activated murine WASP-deficient peritoneal macrophages, which show enhanced N-WASP expression, also show an increase in matrix degradation. Our study suggests that expression levels of WASP and N-WASP may influence their roles in actin cytoskeleton rearrangement and shed light to the complex intertwining roles WASP and N-WASP play in macrophages.  相似文献   

16.
The actin-related protein 2 and 3 (Arp2/3) complex is a seven-subunit protein complex that nucleates actin filaments at the cell cortex. Despite extensive cross-linking, crystallography, genetic and biochemical studies, the contribution of each subunit to the activity of the complex remains largely unclear. In this study we characterized the function of the 40-kDa subunit, ARPC1/Arc40, of the yeast Arp2/3 complex. We showed that this subunit is indeed a stable component of the Arp2/3 complex, but its highly unusual electrophoretic mobility eluded detection in previous studies. Recombinant Arc40 bound the VCA domain of Wiskott-Aldrich syndrome protein family activators at a K(d) of 0.45 mum, close to that of the full complex with VCA (0.30 microm), and this interaction was dependent on the conserved tryptophan at the COOH terminus of VCA. Using a newly constructed Delta arc40 yeast strain, we showed that loss of Arc40 severely reduced the binding affinity of the Arp2/3 complex with VCA as well as the nucleation activity of the complex, suggesting that Arc40 contains an important contact site of the Arp2/3 complex with VCA. The Delta arc40 cells exhibited reduced growth rate, loss of actin patches, and accumulation of cables like actin aggregates, phenotypes typical of other subunit nulls, suggesting that Arc40 functions exclusively within the Arp2/3 complex.  相似文献   

17.
Human endocytic protein ITSN1 regulates actin reorganization by activating Rho family GTPases, such as Cdc42. The process is enhanced by ITSN binding of WASP, an effector of Cdc42 and a potent activator of actin polymerization. In the human pathogen Cryptococcus neoformans, endocytic protein Cin1 also interacts with Cdc42 and Wsp1, an uncharacterized WASP homolog, but the significance of these interactions remains unknown. Wsp1 contains several conserved domains, including a WASP homology 1 domain (WH1), a GTPase binding/Cdc42 and Rac interactive binding domain (GBD/CRIB), and a C-terminal domain composed of verprolin-like, central, and acidic motifs (VCA). Thus, Wsp1 exhibits domain compositions more similar to human WASP proteins than Saccharomyces cerevisiae Las17/Bee1, a WASP homolog lacking the GDB/CRIB domain. Wsp1 is not an essential protein; however, the wsp1 mutant exhibited defects in growth, cytokinesis, chitin distribution, and endocytosis and exocytosis. The wsp1 mutant was also unable to undergo genetic cross, produce the polysaccharide capsule, or secrete the enzyme urease. An in vitro phagocytosis assay showed a higher phagocytic index for the wsp1 mutant, whose ability to cause lethal infection in a murine model of cryptococcosis was also attenuated. Our studies reveal divergent evolution of WASP proteins in the fungal phylum and suggest that the conserved function of WASP proteins in the actin cytoskeleton may also impact fungal virulence.  相似文献   

18.
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency disease, arising from mutations of the WAS-protein (WASP) gene. Previously, we have reported that mononuclear cells from WAS patients showed lack/reduced of the intracellular WASP (WASP(dim)) by flow cytometric analysis, and analysis of WASP by flow cytometry (FCM-WASP) was useful for WAS diagnosis. In this study, we report a WAS patient who showed the unique pattern of FCM-WASP. The patient had the small population of normal expression of WASP (WASP(bright)) mononuclear cells together with the major WASP(dim) population. The WASP(bright) cells were detected in T cells, not in B cells or in monocytes. Surprisingly, the molecular studies of the WASP(bright) cells revealed that the inherited mutation of WASP gene was reversed to normal. His mother was proved as a WAS carrier, and HLA studies and microsatellite polymorphic studies proved that the WASP(bright) cells were derived from the patient himself. Therefore, we concluded that the WASP(bright) cells were resulted from spontaneous in vivo reversion of the inherited mutation. Furthermore, the scanning electron microscopic studies indicated that WASP-positive cells from the patient restored the dense microvillus surface projections that were hardly observed in the WASP(dim) cells. This case might have significant implications regarding the prospects of the future gene therapy for WAS patients.  相似文献   

19.
20.
Shigella flexneri is an intracellular pathogen that disseminates in colonic epithelial cells through actin‐based motility and formation of membrane protrusions at cell–cell contacts, that project into adjacent cells and resolve into vacuoles, from which the pathogen escapes, thereby achieving cell‐to‐cell spread. Actin nucleation at the bacterial pole relies on the recruitment of the nucleation‐promoting factor N‐WASP, which activates the actin nucleator ARP2/3. In cells, the vast majority of N‐WASP exists as a complex with WIP. The involvement of WIP in N‐WASP‐dependent actin‐based motility of various pathogens, including vaccinia virus and S. flexneri, has been highly controversial. Here, we show that WIPF2 was the only WIP family member expressed in the human colonic epithelial cell line HT‐29, and its depletion impaired S. flexneri dissemination. WIPF2 depletion increased the number of cytosolic bacteria lacking actin tails (non‐motile) and decreased the velocity of motile bacteria. This correlated with a decrease in the recruitment of N‐WASP to the bacterial pole, and among N‐WASP‐positive bacteria, a decrease in actin tail‐positive bacteria, suggesting that WIPF2 is required for N‐WASP recruitment and activation at the bacterial pole. In addition, when motile bacteria formed protrusions, WIPF2 depletion decreased the number of membrane protrusions that successfully resolved into vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号