首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumor-directed effector cells.  相似文献   

2.
Gangliosides are potentially useful targets for tumor destruction by antibodies. However, the role of gangliosides in T cell-mediated immunity to tumors is unclear. We produced three murine monoclonal anti-idiotypic antibodies (Ab2) against a monoclonal antibody (Ab1) that binds strongly to melanoma-associated GD2 ganglioside and weakly to GD3 ganglioside. All three Ab2 induced anti-anti-idiotypic antibodies (Ab3) with Ab1-like binding specificity to tumor cells and antigen in rabbits. The Ab3 specifically bound to GD2(+) tumor cells and isolated GD2, and shared idiotopes with the Ab1. Two of the three Ab2 induced GD2-specific delayed-type hypersensitivity responses in BALB/c and C57BL/6 mice, but not in C57BL/6/CD4(-/-) mice. Peripheral blood mononuclear cells (PBMC) from a melanoma patient proliferated specifically in response to in vitro stimulation with Ab2. Proliferation was accompanied by Th1-type cytokine production. Our studies demonstrate the induction of ganglioside-specific T cell-dependent immunity by Ab2 in mice. These T cells showed specific reactivity to ganglioside expressed by tumor cells.  相似文献   

3.
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.  相似文献   

4.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

5.
The development of cancer vaccines requires approaches to induce expansion and functional differentiation of tumor antigen-specific cytotoxic T lymphocyte (CTL) effectors which posses cytolytic capability and produce cytokines. Efficient induction of such cells is hindered by the poor immunogenicity of tumor antigens and by the poor transduction efficiency of dendritic cells (DCs) with current nonreplicating vectors. We have investigated the use of influenza A virus, a potent viral inducer of CTLs, as a vector expressing the immunodominant HER-2 CTL epitope KIF (E75). For this purpose, an attenuated influenza A/PR8/34 virus with a truncated nonstructural (NS1) gene was generated containing the E75 epitope in its neuraminidase protein (KIF-NS virus). Stimulation of peripheral blood mononuclear cells from healthy donors and of tumor-associated lymphocytes from ovarian and breast cancer patients with DCs infected with KIF-NS virus (KIF-NS DC) induced CTLs that specifically recognized the peptide KIF and HER-2-expressing tumors in cytotoxicity assays and secreted gamma interferon (IFN-gamma) and interleukin-2 at recall with peptide. Priming with KIF-NS DCs increased the number of E75(+) CD45RO(+) cells by more than 10-fold compared to nonstimulated cells. In addition, KIF-NS virus induced high levels of IFN-alpha in DCs. This is the first report demonstrating induction of human epitope-specific CTLs against a tumor-associated antigen with a live attenuated recombinant influenza virus vector. Such vectors may provide a novel approach for tumor antigen delivery, lymphocyte activation, and differentiation in human cancer vaccine development.  相似文献   

6.
Functional heterogeneity of vaccine-induced CD8(+) T cells   总被引:5,自引:0,他引:5  
The functional status of circulating vaccine-induced, tumor-specific T cells has been questioned to explain their paradoxical inability to inhibit tumor growth. We enumerated with HLA-A*0201/peptide tetramers (tHLA) vaccine-elicited CD8(+) T cell precursor frequency among PBMC in 13 patients with melanoma undergoing vaccination with the HLA-A*0201-associated gp100:209-217(210 M) epitope. T cell precursor frequency increased from undetectable to 12,400 +/- 3,600 x 10(6) CD8(+) T cells after vaccination and appeared heterogeneous according to previously described functional subtypes: CD45RA(+)CD27(+) (14 +/- 2.6% of tHLA-staining T cells), naive; CD45RA(-)CD27(+) (14 +/- 3.2%), memory; CD45RA(+)CD27(-) (43 +/- 6%), effector; and CD45RA(-)CD27(-) (30 +/- 4.1%), memory/effector. The majority of tHLA(+)CD8(+) T cells displayed an effector, CD27(-) phenotype (73%). However, few expressed perforin (17%). Epitope-specific in vitro stimulation (IVS) followed by 10-day expansion in IL-2 reversed this phenotype by increasing the number of perforin(+) (84 +/- 3.6%; by paired t test, p < 0.001) and CD27(+) (from 28 to 67%; by paired t test, p = 0.01) tHLA(+) T cells. This conversion probably represented a change in the functional status of tHLA(+) T cells rather than a preferential expansion of a CD27(+) (naive and/or memory) PBMC, because it was reproduced after IVS of a T cell clone bearing a classic effector phenotype (CD45RA(+)CD27(-)). These findings suggest that circulating vaccine-elicited T cells are not as functionally active as inferred by characterization of IVS-induced CTL. In addition, CD45RA/CD27 expression may be more informative about the status of activation of circulating T cells than their status of differentiation.  相似文献   

7.
A mouse/human chimeric antibody (ch14.18) was developed that reacts with the disialoganglioside GD2 on the surface of tumor cells of neuroectodermal origin. ch14.18 has the constant regions of a human IgG1 antibody and was expressed in a murine hybridoma. This antibody was produced in tissue culture at concentrations up to 180 mg/liter of spent culture fluid. ch14.18 was characterized and compared to 14.G2a, a murine mAb against GD2 of IgG2a isotype derived from the same parental hybridoma as ch14.18. Scatchard plot analysis of data from saturation binding studies on M21 melanoma cells showed identical binding for ch14.18 and 14.G2a. Indirect immunofluorescence revealed the same staining pattern for ch14.18 and 14.G2a on different melanoma cell lines. Both antibodies were equally capable of targeting M21 xenografts in athymic nude mice. ch14.18- and 14.G2a-activated human C-mediated cytolysis of melanoma cell; however, ch14.18-mediated antibody-dependent cytotoxicity of human effector cells against melanoma cells 50- to 100-fold more efficiently than 14.G2a.  相似文献   

8.
CaMBr1 is a tissue-specific and tumor-associated saccharidic epitope, defined by mAb MBr1 (Ab1), expressed on glycoconjugates of the human mammary carcinoma cell line MCF-7 and of normal and neoplastic mammary epithelial cells. An anti-anti-idiotypic monoclonal Ab3, 2G-3, identifying a human breast tumor associated antigen, was raised by using as immunogen a mouse anti-idiotypic monoclonal Ab2, A3B10, which behaves as the internal image of CaMBr1. mAb 2G-3, as well as MBr1, defines a saccharidic epitope on glycoconjugates extracted from MCF-7 cells and shows MBr1-like reactivity on normal and neoplastic-tissues. Experimental evidence, however, suggests that the fine immunoreactivity of the two antibodies is not identical, because MBr1 has a preferential reactivity with glycolipids and 2G-3 with glycoproteins. We suggest that a possible biologic explanation for our findings could reside in the nature of the immunogens used to raise the two mAb (glycolipid vs protein "internal image").  相似文献   

9.
The ability to initiate and sustain CD8(+) T cell responses to tumors in vivo is hindered by the development of peripheral T cell tolerance against tumor-associated Ags. Approaches that counter the onset of T cell tolerance may preserve a pool of potentially tumor-reactive CD8(+) T cells. Administration of agonist Ab to the CD40 molecule, expressed on APCs, can enhance immunization approaches targeting T lymphocytes in an otherwise tolerance-prone environment. In this report, the effects of anti-CD40 administration on priming of naive CD8(+) T cells against an endogenous tumor Ag were investigated. Line 501 mice express the SV40 large T Ag oncoprotein as a transgene from the alpha-amylase promoter, resulting in the development of peripheral CD8(+) T cell tolerance to the H-2-D(b)-restricted immunodominant epitope I of T Ag by 6 mo of age, before the appearance of osteosarcomas. We demonstrate that naive epitope I-specific TCR transgenic (TCR-I) T cells undergo peripheral tolerance following adoptive transfer into 6-mo-old 501 mice. In contrast, administration of agonistic anti-CD40 Ab led to increased expansion of TCR-I T cells in 501 mice, the acquisition of effector function by TCR-I T cells and the establishment of T cell memory. Importantly, this enhanced priming effect of anti-CD40 administration did not require immunization and was effective even if administered after naive TCR-I T cells had encountered the endogenous T Ag. Thus, anti-CD40 administration can block the onset of peripheral tolerance and enhance the recruitment of functionally competent effector T cells toward an endogenous tumor Ag.  相似文献   

10.
Therapeutic mAbs that target tumor-associated Ags on the surface of malignant cells have proven to be an effective and specific option for the treatment of certain cancers. However, many of these protein markers of carcinogenesis are not expressed on the cells' surface. Instead these tumor-associated Ags are processed into peptides that are presented at the cell surface, in the context of MHC class I molecules, where they become targets for T cells. To tap this vast source of tumor Ags, we generated a murine IgG2a mAb, 3.2G1, endowed with TCR-like binding specificity for peptide-HLA-A*0201 (HLA-A2) complex and designated this class of Ab as TCR mimics (TCRm). The 3.2G1 TCRm recognizes the GVL peptide (GVLPALPQV) from human chorionic gonadotropin beta presented by the peptide-HLA-A*0201 complex. When used in immunofluorescent staining reactions using GVL peptide-loaded T2 cells, the 3.2G1 TCRm specifically stained the cells in a peptide and Ab concentration-dependent manner. Staining intensity correlated with the extent of cell lysis by complement-dependent cytotoxicity (CDC), and a peptide concentration-dependent threshold level existed for the CDC reaction. Staining of human tumor lines demonstrated that 3.2G1 TCRm was able to recognize endogenously processed peptide and that the breast cancer cell line MDA-MB-231 highly expressed the target epitope. The 3.2G1 TCRm-mediated CDC and Ab-dependent cellular cytotoxicity of a human breast carcinoma line in vitro and inhibited in vivo tumor implantation and growth in nude mice. These results provide validation for the development of novel TCRm therapeutic reagents that specifically target and kill tumors via recognition and binding to MHC-peptide epitopes.  相似文献   

11.
Targeting recycling endocytic receptors with specific Abs provides a means for introducing a variety of tumor-associated Ags into human dendritic cells (DCs), culminating in their efficient presentation to T cells. We have generated a human mAb (B11) against the mannose receptor that is rapidly internalized by DCs through receptor-mediated endocytosis. By genetically linking the melanoma Ag, pmel17, to Ab B11, we obtained the fully human fusion protein, B11-pmel17. Treatment of DCs with B11-pmel17 resulted in the presentation of pmel17 in the context of HLA class I and class II molecules. Thus, potent pmel17-specific T cells were cytotoxic toward gp100(+) HLA-matched melanoma targets, but not HLA-mismatched melanoma or gp100(-) nonmelanoma tumor lines. Importantly, competitive inhibition of lysis of an otherwise susceptible melanoma cell line by cold targets pulsed with known gp100 CD8 T cell epitopes as well as a dose-dependent proliferative response to Th epitopes demonstrates that DCs can process targeted Ag for activation of cytotoxic as well as helper arms of the immune response. Thus, the specific targeting of soluble exogenous tumor Ag to the DC mannose receptor directly contributes to the generation of multiple HLA-restricted Ag-specific T cell responses.  相似文献   

12.
Neuroblastoma treatment with chimeric antidisialoganglioside GD2 Ab ch14.18 showed objective antitumor responses. Production of anti-idiotypic Abs (Ab2) against ch14.18 (Ab1) in some cases was positively correlated with a more favorable prognosis. According to Jerne's network theory, a subset of anti-idiotypic Abs (Ab2beta) carries an "internal image" of the Ag and induces Abs (Ab3) against the original Ag. The molecular origin of an anti-idiotypic Ab response in tumor patients was not investigated previously. To clone anti-idiotypic Abs, B cells of a ch14.18-treated neuroblastoma patient with Ab2 serum reactivity were used to construct Ab phage display libraries. After repeated biopannings on ch14.18 and its murine relative, anti-GD2 mAb 14G2a, we selected 40 highly specific clones. Sequence analysis revealed at least 10 of 40 clones with different Ig genes. Identities to putative germline genes ranged between 94.90 and 100% for V(H) and between 93.90 and 99.60% for V(L). An overall high rate of replacement mutations suggested a strong Ag-driven maturation of the anti-idiotypic Abs. Two clones that were analyzed further, GK2 and GK8, inhibited binding of ch14.18 to GD2 just as the patient's serum did. GK8 alone inhibited >80% of the patient's anti-idiotypic serum Abs in binding to ch14.18. Rabbits vaccinated with GK8 or GK2 (weaker) produced Ab3 against the original target Ag GD2. GK8 may be useful as a tumor vaccine for GD2-positive [corrected] tumors.  相似文献   

13.
Tumor-associated, MHC-restricted peptides, recognized by tumor-specific CD8(+) lymphocytes, are desirable targets for novel approaches in immunotherapy because of their highly restricted fine specificity. Abs that recognize these tumor-associated MHC-peptide complexes, with the same specificity as TCR, would therefore be valuable reagents for studying Ag presentation by tumor cells, for visualizing MHC-peptide complexes on cells, and eventually for developing new targeting agents for cancer immunotherapy. To generate molecules with such a unique, fine specificity, we immunized HLA-A2 transgenic mice with a single-chain HLA-A2, complexed with a common antigenic T cell HLA-A2-restricted epitope derived from the melanoma differentiation Ag gp100. Using a phage display approach, we isolated a recombinant scFv Ab that exhibits a characteristic TCR-like binding specificity, yet, unlike TCRs, it did so with a high affinity in the nanomolar range. The TCR-like Ab can recognize the native MHC-peptide complex expressed on the surface of APCs, and on peptide-pulsed or native melanoma cells. Moreover, when fused to a very potent cytotoxic effector molecule in the form of a truncated bacterial toxin, it was able to specifically kill APCs in a peptide-dependent manner. These results demonstrate the utility of high affinity TRC-like scFv recombinant Abs directed toward human cancer T cell epitopes. Such TCR-like Abs may prove to be very useful for monitoring and visualizing the expression of specific MHC-peptide complexes on the surface of tumor cells, APCs, and lymphoid tissues, as well as for developing a new family of targeting agents for immunotherapy.  相似文献   

14.
Murine 2B4 (CD244) is a cell surface receptor expressed on all NK cells, gammadelta-T cells, a subset of CD8(+) T cells, and all CD14(+) monocytes. 2B4 binds to CD48 with high affinity, and cross-linking 2B4 with anti-2B4 Ab in vitro causes activation of NK cells. To study its physiological role, we have generated, by gene targeting, mice deficient in the expression of this cell surface molecule. The expression of lymphoid cell surface markers on PBMC and splenocytes of mice homozygous for the mutation in 2B4 (2B4(-/-)) is identical to that in wild-type mice. However, thymocytes from female 2B4(-/-) mice, but not male 2B4(-/-) mice, have an increase in the immature CD4(-)/CD8(-) population. To investigate the in vivo role of 2B4, wild-type and 2B4(-/-) mice were injected with CD48(+) and CD48(-) metastatic B16 melanoma cells. Wild-type mice rejected CD48(+) melanoma poorly compared with CD48(-) tumor cells, suggesting that ligation of 2B4 by CD48 on melanoma cells is inhibitory. In keeping with this, male 2B4(-/-) mice showed enhanced ability to reject CD48(+) melanoma cells. However, female 2B4(-/-) mice poorly rejected both CD48(+) and CD48(-) melanoma cells, revealing a gender-specific and CD48-independent defect in mice lacking 2B4. In vitro and in vivo experiments reveal a complex role of NK cells in gender specificity.  相似文献   

15.
16.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

17.
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.  相似文献   

18.
A murine monoclonal antibody (mAb), designated mAb 202, was generated using a human melanoma cell line, UCLASO-M14 as the immunogen. mAb 202 reacted with two (GM2 and GM3) of the four (GM2, GM3, GD2, and GD3) gangliosides expressed by M14. Several authentic monosialogangliosides, including GM4, GM3, GM2, GM1, GM1b, and sialylparagloboside were then tested for their binding to 202 mAb by the immune adherence inhibition assay, TLC-enzyme immunostaining, and enzyme-linked immunosorbent assay. All showed positive binding but in varying degrees. GM4 showed the strongest affinity. No significant differences of reactivity were observed between the sialic acid derivatives, N-acetyl and N-glycolyl, in these gangliosides. Disialogangliosides such as GD3, GD2, GD1a, and GD1b, trisialoganglioside GT1b, and neutral glycolipids including GlcCer, GalCer, LacCer, GbOs3Cer, GbOs4Cer, GgOs3Cer, GgOs4Cer, and nLcOs4Cer were all negative. These results indicate that the 202 mAb detects sialyl alpha 2----3Gal residue in the monosialoganglioside, irrespective of the internal structure. Since GM4 is not expressed by M14 cells, the terminal disaccharide (sialyl alpha 2----3Gal) in GM3 and/or GM2 must have been the epitope responsible for the generation of the antibody.  相似文献   

19.
20.
Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4(+)CD25(+) regulatory T (T(reg)) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to T(reg) cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by T(reg) cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号