共查询到20条相似文献,搜索用时 110 毫秒
1.
Background
The analysis of correlation in alignments generates a matrix of predicted contacts between positions in the structure and while these can arise for many reasons, the simplest explanation is that the pair of residues are in contact in a three-dimensional structure and are affecting each others selection pressure. To analyse these data, A dynamic programming algorithm was developed for parsing secondary structure interactions in predicted contact maps.Results
The non-local nature of the constraints required an iterated approach (using a “frozen approximation”) but with good starting definitions, a single pass was usually sufficient. The method was shown to be effective when applied to the transmembrane class of protein and error tolerant even when the signal becomes degraded. In the globular class of protein, where the extent of interactions are more limited and more complex, the algorithm still behaved well, classifying most of the important interactions correctly in both a small and a large test case. For the larger protein, this involved examples of the algorithm apportioning parts of a single large secondary structure element between two different interactions.Conclusions
It is expected that the method will be useful as a pre-processor to coarse-grained modelling methods to extend the range of protein tertiary structure prediction to larger proteins or to data that is currently too ’noisy’ to be used by current residue-based methods.2.
Prediction of topological representations of proteins that are geometrically invariants can contribute towards the solution of fundamental open problems in structural genomics like folding. In this paper we focus on coarse grained protein contact maps, a representation that describes the spatial neighborhood relation between secondary structure elements such as helices, beta sheets, and random coils. Our methodology is based on searching the graph space. The search algorithm is guided by an adaptive evaluation function computed by a specialized noncausal recursive connectionist architecture. The neural network is trained using candidate graphs generated during examples of successful searches. Our results demonstrate the viability of the approach for predicting coarse contact maps. 相似文献
3.
Experimentally derived genome-wide protein interaction networks have been useful in the elucidation of functional information that is not evident from examining individual proteins but determination of these networks is complex and time consuming. To address this problem, several computational methods for predicting protein networks in novel genomes have been developed. A recent publication by Date and Marcotte describes the use of phylogenetic profiling for elucidating novel pathways in proteomes that have not been experimentally characterized. This method, in combination with other computational methods for generating protein-interaction networks, might help identify novel functional pathways and enhance functional annotation of individual proteins. 相似文献
4.
Models of infectious diseases are characterized by a phase transition between extinction and persistence. A challenge in contemporary epidemiology is to understand how the geometry of a host’s interaction network influences disease dynamics close to the critical point of such a transition. Here we address this challenge with the help of moment closures. Traditional moment closures, however, do not provide satisfactory predictions close to such critical points. We therefore introduce a new method for incorporating longer-range correlations into existing closures. Our method is technically simple, remains computationally tractable and significantly improves the approximation’s performance. Our extended closures thus provide an innovative tool for quantifying the influence of interaction networks on spatially or socially structured disease dynamics. In particular, we examine the effects of a network’s clustering coefficient, as well as of new geometrical measures, such as a network’s square clustering coefficients. We compare the relative performance of different closures from the literature, with or without our long-range extension. In this way, we demonstrate that the normalized version of the Bethe approximation-extended to incorporate long-range correlations according to our method-is an especially good candidate for studying influences of network structure. Our numerical results highlight the importance of the clustering coefficient and the square clustering coefficient for predicting disease dynamics at low and intermediate values of transmission rate, and demonstrate the significance of path redundancy for disease persistence. 相似文献
5.
Background
Protein sequence alignment is one of the basic tools in bioinformatics. Correct alignments are required for a range of tasks including the derivation of phylogenetic trees and protein structure prediction. Numerous studies have shown that the incorporation of predicted secondary structure information into alignment algorithms improves their performance. Secondary structure predictors have to be trained on a set of somewhat arbitrarily defined states (e.g. helix, strand, coil), and it has been shown that the choice of these states has some effect on alignment quality. However, it is not unlikely that prediction of other structural features also could provide an improvement. In this study we use an unsupervised clustering method, the self-organizing map, to assign sequence profile windows to "structural states" and assess their use in sequence alignment. 相似文献6.
Vassura M Margara L Di Lena P Medri F Fariselli P Casadio R 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2008,5(3):357-367
The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Ångstroms allow reconstructing 3D models that are very similar to the proteins native structure. 相似文献
7.
MOTIVATION: The number of protein families has been estimated to be as small as 1000. Recent study shows that the growth in discovery of novel structures that are deposited into PDB and the related rate of increase of SCOP categories are slowing down. This indicates that the protein structure space will be soon covered and thus we may be able to derive most of remaining structures by using the known folding patterns. Present tertiary structure prediction methods behave well when a homologous structure is predicted, but give poorer results when no homologous templates are available. At the same time, some proteins that share twilight-zone sequence identity can form similar folds. Therefore, determination of structural similarity without sequence similarity would be beneficial for prediction of tertiary structures. RESULTS: The proposed PFRES method for automated protein fold classification from low identity (<35%) sequences obtains 66.4% and 68.4% accuracy for two test sets, respectively. PFRES obtains 6.3-12.4% higher accuracy than the existing methods. The prediction accuracy of PFRES is shown to be statistically significantly better than the accuracy of competing methods. Our method adopts a carefully designed, ensemble-based classifier, and a novel, compact and custom-designed feature representation that includes nearly 90% less features than the representation of the most accurate competing method (36 versus 283). The proposed representation combines evolutionary information by using the PSI-BLAST profile-based composition vector and information extracted from the secondary structure predicted with PSI-PRED. AVAILABILITY: The method is freely available from the authors upon request. 相似文献
8.
To improve the prediction accuracy in the regime where template alignment quality is poor, an updated version of TASSER_2.0, namely TASSER_WT, was developed. TASSER_WT incorporates more accurate contact restraints from a new method, COMBCON. COMBCON uses confidence-weighted contacts from PROSPECTOR_3.5, the latest version, PROSPECTOR_4, and a new local structural fragment-based threading algorithm, STITCH, implemented in two variants depending on expected fragment prediction accuracy. TASSER_WT is tested on 622 Hard proteins, the most difficult targets (incorrect alignments and/or templates and incorrect side-chain contact restraints) in a comprehensive benchmark of 2591 nonhomologous, single domain proteins ≤200 residues that cover the PDB at 35% pairwise sequence identity. For 454 of 622 Hard targets, COMBCON provides contact restraints with higher accuracy and number of contacts per residue. As contact coverage with confidence weight ≥3 (Fwt≥3cov) increases, the more improved are TASSER_WT models. When Fwt≥3cov > 1.0 and > 0.4, the average root mean-square deviation of TASSER_WT (TASSER_2.0) models is 4.11 Å (6.72 Å) and 5.03 Å (6.40 Å), respectively. Regarding a structure prediction as successful when a model has a TM-score to the native structure ≥0.4, when Fwt≥3cov > 1.0 and > 0.4, the success rate of TASSER_WT (TASSER_2.0) is 98.8% (76.2%) and 93.7% (81.1%), respectively. 相似文献
9.
In the last years, small-world behavior has been extensively described for proteins, when they are represented by the undirected graph defined by the inter-residue protein contacts. By adopting this representation it was possible to compute the average clustering coefficient (C) and characteristic path length (L) of protein structures, and their values were found to be similar to those of graphs characterized by small-world topology. In this comment, we analyze a large set of non-redundant protein structures (1753) and show that by randomly mimicking the protein collapse, the covalent structure of the protein chain significantly contributes to the small-world behavior of the inter-residue contact graphs. When protein graphs are generated, imposing constraints similar to those induced by the backbone connectivity, their characteristic path lengths and clustering coefficients are indistinguishable from those computed using the real contact maps showing that L and C values cannot be used for 'protein fingerprinting'. Moreover we verified that these results are independent of the selected protein representations, residue composition and protein secondary structures. 相似文献
10.
β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. 相似文献
11.
Ashraf Yaseen Mais Nijim Brandon Williams Lei Qian Min Li Jianxin Wang Yaohang Li 《BMC bioinformatics》2016,17(8):281
Background
The fluctuation of atoms around their average positions in protein structures provides important information regarding protein dynamics. This flexibility of protein structures is associated with various biological processes. Predicting flexibility of residues from protein sequences is significant for analyzing the dynamic properties of proteins which will be helpful in predicting their functions.Results
In this paper, an approach of improving the accuracy of protein flexibility prediction is introduced. A neural network method for predicting flexibility in 3 states is implemented. The method incorporates sequence and evolutionary information, context-based scores, predicted secondary structures and solvent accessibility, and amino acid properties. Context-based statistical scores are derived, using the mean-field potentials approach, for describing the different preferences of protein residues in flexibility states taking into consideration their amino acid context.The 7-fold cross validated accuracy reached 61 % when context-based scores and predicted structural states are incorporated in the training process of the flexibility predictor.Conclusions
Incorporating context-based statistical scores with predicted structural states are important features to improve the performance of predicting protein flexibility, as shown by our computational results. Our prediction method is implemented as web service called “FLEXc” and available online at: http://hpcr.cs.odu.edu/flexc.12.
Comparative sequence analysis has been used to study specific questions about the structure and function of proteins for many years. Here we propose a knowledge-based framework in which the maximum likelihood rate of evolution is used to quantify the level of constraint on the identity of a site. We demonstrate that site-rate mapping on 3D structures using datasets of rhodopsin-like G-protein receptors and alpha- and beta-tubulins provides an excellent tool for pinpointing the functional features shared between orthologous and paralogous proteins. In addition, functional divergence within protein families can be inferred by examining the differences in the site rates, the differences in the chemical properties of the side chains or amino acid usage between aligned sites. Two novel analytical methods are introduced to characterize rate- independent functional divergence. These are tested using a dataset of two classes of HMG-CoA reductases for which only one class can perform both the forward and reverse reaction. We show that functionally divergent sites occur in a cluster of sites interacting with the catalytic residues and that this information should facilitate the design of experimental strategies to directly test functional properties of residues. 相似文献
13.
Michal Brylinski Seung Yup Lee Hongyi Zhou Jeffrey Skolnick 《Journal of structural biology》2011,173(3):558-569
Exhaustive exploration of molecular interactions at the level of complete proteomes requires efficient and reliable computational approaches to protein function inference. Ligand docking and ranking techniques show considerable promise in their ability to quantify the interactions between proteins and small molecules. Despite the advances in the development of docking approaches and scoring functions, the genome-wide application of many ligand docking/screening algorithms is limited by the quality of the binding sites in theoretical receptor models constructed by protein structure prediction. In this study, we describe a new template-based method for the local refinement of ligand-binding regions in protein models using remotely related templates identified by threading. We designed a Support Vector Regression (SVR) model that selects correct binding site geometries in a large ensemble of multiple receptor conformations. The SVR model employs several scoring functions that impose geometrical restraints on the Cα positions, account for the specific chemical environment within a binding site and optimize the interactions with putative ligands. The SVR score is well correlated with the RMSD from the native structure; in 47% (70%) of the cases, the Pearson’s correlation coefficient is >0.5 (>0.3). When applied to weakly homologous models, the average heavy atom, local RMSD from the native structure of the top-ranked (best of top five) binding site geometries is 3.1 Å (2.9 Å) for roughly half of the targets; this represents a 0.1 (0.3) Å average improvement over the original predicted structure. Focusing on the subset of strongly conserved residues, the average heavy atom RMSD is 2.6 Å (2.3 Å). Furthermore, we estimate the upper bound of template-based binding site refinement using only weakly related proteins to be ~2.6 Å RMSD. This value also corresponds to the plasticity of the ligand-binding regions in distant homologues. The Binding Site Refinement (BSR) approach is available to the scientific community as a web server that can be accessed at http://cssb.biology.gatech.edu/bsr/. 相似文献
14.
15.
Contact maps of proteins are predicted with neural network-based methods, using as input codings of increasing complexity including evolutionary information, sequence conservation, correlated mutations and predicted secondary structures. Neural networks are trained on a data set comprising the contact maps of 173 non-homologous proteins as computed from their well resolved three-dimensional structures. Proteins are selected from the Protein Data Bank database provided that they align with at least 15 similar sequences in the corresponding families. The predictors are trained to learn the association rules between the covalent structure of each protein and its contact map with a standard back propagation algorithm and tested on the same protein set with a cross-validation procedure. Our results indicate that the method can assign protein contacts with an average accuracy of 0.21 and with an improvement over a random predictor of a factor >6, which is higher than that previously obtained with methods only based either on neural networks or on correlated mutations. Furthermore, filtering the network outputs with a procedure based on the residue coordination numbers, the accuracy of predictions increases up to 0.25 for all the proteins, with an 8-fold deviation from a random predictor. These scores are the highest reported so far for predicting protein contact maps. 相似文献
16.
We introduce an energy function for contact maps of proteins. In addition to the standard term, that takes into account pair-wise interactions between amino acids, our potential contains a new hydrophobic energy term. Parameters of the energy function were obtained from a statistical analysis of the contact maps of known structures. The quality of our energy function was tested extensively in a variety of ways. In particular, fold recognition experiments revealed that for a fixed sequence the native map is identified correctly in an overwhelming majority of the cases tested. We succeeded in identifying the structure of some proteins that are known to pose difficulties for such tests (BPTI, spectrin, and cro-protein). In addition, many known pairs of homologous structures were correctly identified, even when the two sequences had relatively low sequence homology. We also introduced a dynamic Monte Carlo procedure in the space of contact maps, taking topological and polymeric constraints into account by restrictive dynamic rules. Various aspects of protein dynamics, including high-temperature melting and refolding, were simulated. Perspectives of application of the energy function and the method for structure checking and fold prediction are discussed. Proteins 26:391–410 © 1996 Wiley-Liss, Inc. 相似文献
17.
18.
MOTIVATION: Progress in large-scale experimental determination of protein-protein interaction networks for several organisms has resulted in innovative methods of functional inference based on network connectivity. However, the amount of effort and resources required for the elucidation of experimental protein interaction networks is prohibitive. Previously we, and others, have developed techniques to predict protein interactions for novel genomes using computational methods and data generated from other genomes. RESULTS: We evaluated the performance of a network-based functional annotation method that makes use of our predicted protein interaction networks. We show that this approach performs equally well on experimentally derived and predicted interaction networks, for both manually and computationally assigned annotations. We applied the method to predicted protein interaction networks for over 50 organisms from all domains of life, providing annotations for many previously unannotated proteins and verifying existing low-confidence annotations. AVAILABILITY: Functional predictions for over 50 organisms are available at http://bioverse.compbio.washington.edu and datasets used for analysis at http://data.compbio.washington.edu/misc/downloads/nannotation_data/. SUPPLEMENTARY INFORMATION: A supplemental appendix gives additional details not in the main text. (http://data.compbio.washington.edu/misc/downloads/nannotation_data/supplement.pdf). 相似文献
19.
Monika Kurczynska Ewa Kania Bogumil M. Konopka Malgorzata Kotulska 《Journal of molecular modeling》2016,22(5):111
Reconstructing protein structure based on contact maps leads to two types of models: properly oriented models and mirror models. This is due to the fact that contact maps do not include information on protein chirality. Therefore, both types of model orientations share the same contact map and are geometrically allowed. In this work, we verified the hypothesis that some of the energy terms calculated by PyRosetta could be useful to distinguish between properly oriented and mirror models. We studied 440 models of all-alpha protein domains reconstructed manually from their contact maps, where 50 % of the models were properly oriented and 50 % had mirror orientation. We showed that dihedral angles and energy terms, based on the probability of specific geometrical arrangement of the residues, differed significantly for properly oriented and mirror models. 相似文献
20.