首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cartilage is categorized into three general subgroups, hyaline, elastic, and fibrocartilage, based primarily on morphologic criteria and secondarily on collagen (Types I and II) and elastin content. To more precisely define the different cartilage subtypes, rabbit cartilage isolated from joint, nose, auricle, epiglottis, and meniscus was characterized by immunohistochemical (IHC) localization of elastin and of collagen Types I, II, V, VI, and X, by biochemical analysis of total glycosaminoglycan (GAG) content, and by biomechanical indentation assay. Toluidine blue staining and safranin-O staining were used for morphological assessment of the cartilage subtypes. IHC staining of the cartilage samples showed a characteristic pattern of staining for the collagen antibodies that varied in both location and intensity. Auricular cartilage is discriminated from other subtypes by interterritorial elastin staining and no staining for Type VI collagen. Epiglottal cartilage is characterized by positive elastin staining and intense staining for Type VI collagen. The unique pattern for nasal cartilage is intense staining for Type V collagen and collagen X, whereas articular cartilage is negative for elastin (interterritorially) and only weakly positive for collagen Types V and VI. Meniscal cartilage shows the greatest intensity of staining for Type I collagen, weak staining for collagens V and VI, and no staining with antibody to collagen Type X. Matching cartilage samples were categorized by total GAG content, which showed increasing total GAG content from elastic cartilage (auricle, epiglottis) to fibrocartilage (meniscus) to hyaline cartilage (nose, knee joint). Analysis of aggregate modulus showed nasal and auricular cartilage to have the greatest stiffness, epiglottal and meniscal tissue the lowest, and articular cartilage intermediate. This study illustrates the differences and identifies unique characteristics of the different cartilage subtypes in rabbits. The results provide a baseline of data for generating and evaluating engineered repair cartilage tissue synthesized in vitro or for post-implantation analysis.  相似文献   

2.
Collagen immunotyping by indirect immunofluorescence was performed in order to investigate the sequential development of bone formation. Osseous tumors were obtained after subcutaneous injection of 3/A/1D-1 teratocarcinoma cell line into 129/Sv mice (Nicolas et al., 1980). Frozen sections of developing tumors were incubated with specific antibodies directed against Types I, II, III, IV, and IX collagens. On Day 9, the expression of Type I and Type III collagens was correlated with the proliferation of mesenchymal cells. From Day 10, chondrogenesis was characterized by the occurrence of cartilaginous collagens, Types II and IX, in the cartilage matrix. Type IV collagen was also detected in focal areas and revealed vascular invasion of the tumor. On Day 13, osteogenesis was demonstrated by the presence of Type I collagen in the bone matrix coating the surfaces. Immunolocalization of Type III collagen on the hemopoietic elements corresponded with the bone remodeling. The sequential transitions of collagen types confirm the development of an endochondral bone tumor. These results suggest that 3/A/1D-1 teratocarcinoma cell line constitutes a valuable system for in vitro study of endochondral bone formation and cell differentiation.  相似文献   

3.
By immunofluorescence analyses, we have determined that Type III procollagen, Type III collagen, and B and C chains of basement membrane collagen are associated with preimplantation mouse embryos. Type III collagen and procollagen appear to be associated with embryos at the 4-cell stage and beyond, whereas antibodies to B and C collagen chains bind to 2-cell and later embryos. All of these collagen types are detected in increasing amounts as embryos develop in a defined medium, indicating that the embryo is capable of their synthesis. By the blastocyst stage, the collagens are primarily localized intercellularly. Cells of the inner cell mass (ICM) also bind collagen antibodies. When isolated ICMs become two-layered, both the inner presumptive ectoderm layer and the outer primitive endoderm layer react with antibodies to Type III collagen and procollagen. The endoderm cells also react avidly with antibodies to B- and C-chain collagens. Preimplantation embryos and ICMs fail to react with antibodies to Types I and II collagen. During peri-implantation stages, blastocysts continue to react with antibodies to Type III and basement membrane collagens. There is no obvious relationship between the intensity of immunofluorescence and the change in the blastocyst surface from nonadhesive to adhesive. Furthermore, blastocysts prevented from undergoing implantation-related events in utero and in vitro react extensively with collagen antibodies. Blastocyst surface collagens might, nevertheless, play a role in implantation by undergoing organizational changes.  相似文献   

4.
Type X collagen alterations in rachitic chick epiphyseal growth cartilage   总被引:2,自引:0,他引:2  
We examined collagens of both normal and vitamin D-deficient chick epiphyseal growth cartilage. Special emphasis was placed on the study of Type X collagen, a recently described product of hypertrophic chondrocytes. Scanning electron microscopy of the epiphyseal growth cartilage of vitamin D-deficient chickens showed an enlarged growth cartilage with a disorganized extracellular matrix. The cartilage collagens were solubilized by proteolytic digestion and disulfide bond reduction of both normal and rachitic growth tissues. Sequential extraction with neutral salt and acetic acid buffers followed by pepsin digestion at 4 degrees C solubilized about 12% of normal tissues and about 7% of collagen from rachitic growth cartilage. Treatment of the pepsin-resistant collagens with neutral salt-dithiothreitol buffer under nondenaturing conditions and a subsequent pepsin digestion increased the yield of solubilized collagen to greater than 95% of the total tissue collagen. Results of the biochemical studies showed a marked increase in the relative proportion of Type X collagen (from 5.6 to 27.9%), a corresponding decrease in the proportions of Types II and IX collagens, and a moderate increase in Type XI collagen in rachitic cartilage. Amino acid analysis indicated that there were no differences in the Types II and X collagens of normal and rachitic cartilage. However, an abnormality in the relative proportions of the CNBr peptides of Type X collagen was detected in the rachitic cartilage. We suggest that the increase in collagen in the rachitic state may reflect increased levels of Type X collagen synthesis by cells in the hypertrophic region. It is likely that in rickets the overproduction of Type X collagen may be a compensatory mechanism by which the hypertrophic chondrocyte attempts to provide a maximum area of calcifiable matrix for the calcium-depleted serum.  相似文献   

5.
The transition of type I and type II collagens during cartilage and bone development in the chick embryo was studied by immunofluorescence using antibodies against type I or type II collagens. Type II collagen was found in all cartilaginous structures which showed metachromatic staining. Type I collagen appeared in the perichondrium of the tibia at stage 28 and was also found in osteoid, periosteal and enchondral bone after decalcification, periosteum, and tendons, ligaments, and capsules.Using the immunohistological method it was possible to identify specific collagen types in areas undergoing rapid proliferation and collagen transition, such as diaphyseal and epiphyseal perichondrium, or in enchondral osteogenesis. During enchondral ossification type I collagen is deposited onto the eroded surface of cartilage. It partially diffuses into the cartilage matrix forming a “hybrid” collagen matrix with type II collagen, which is a site for subsequent ossification. During appositional growth of diaphyseal cartilage and differentiation of epiphyseal perichondrium into articular cartilage, perichondral cells switch from type I to type II collagen synthesis when differentiating into chondroblasts. In the transition zones, chondroblasts are imbedded in a “hybrid” matrix consisting of a mixture of type I and type II collagens.  相似文献   

6.
The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion.  相似文献   

7.
The in vitro phenotype of bovine articular chondrocytes is described. Chondrocytes plated at high density in roller-bottle and dish cultures were maintained in vitro. The major matrix macromolecules, collagen and proteoglycan, synthesized by these cells were characterized during the course of the culture period. The chondrocytes synthesized mainly Type II collagen, which was found predominantly in the cell-associated matrix. The media contained a mixture of Type II and Type III collagens. Type I collagen was detectable in neither the medium nor the cell-associated matrix. The proteoglycan monomers found in media and cell-associated matrix had the same hydrodynamic sizes as monomers synthesized by cartilage slices or those extracted from adult articular cartilage. The majority of proteoglycans synthesized by the cells were found in high molecular weight aggregates which were readily recovered from the media and were extractable from cell-associated matrix with low ionic strength buffers. The results demonstrate the long-term in vitro phenotypic stability of the bovine articular chondrocytes. The advantages of the in vitro system as a model for studying the effects of external agents, such as drugs and vitamins, are discussed.  相似文献   

8.
The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an α1(II) and an α1(III) telopeptide to the α1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.  相似文献   

9.
The different collagen types were extracted sequentially, by 4 M guanidinium chloride and pepsin, from human foetal and normal and osteoarthritic adult articular cartilage. They were characterized by electrophoresis and immunoblotting. Most of the collagenous proteins present in articular cartilage from young human foetuses were solubilized: almost 40% of the total collagen was extracted in the native form with 4 M guanidinium chloride. Type VI collagen was detected in this fraction as high-molecular-mass chains (185-220 kDa) and a low-molecular-mass chain (140 kDa). Type II, IX and XI collagens were also present, but were extracted more extensively by pepsin digestion. Comparative analysis of normal and osteoarthritic cartilage from adults reveals some major differences: an increase in the solubility of the collagen and modifications of soluble collagen types in osteoarthritic cartilage. Furthermore, type VI collagen was present at a higher concentration in guanidinium chloride extracts of osteoarthritic cartilage than those of normal tissue. This finding was corroborated by electron microscopic observations of the same samples: abundant (100 nm) periodic fibrils were observed in the disorganized pericellular capsule of cloned cells in osteoarthritic cartilage. In normal tissues the pericellular zone was more compact and contained only a few such banded fibrils. The differences in the collagen types solubilized from normal and osteoarthritic cartilage, although corresponding to a minor proportion of the total collagen, demonstrate that important modifications in chondrocyte metabolism and in the collagenous network do occur in degenerated cartilage.  相似文献   

10.
In vitro cell-mediated immune responses to homologous rabbit immunoglobulin G (IgG), purified protein derivative (PPD), native Type I, II, and III collagen, and denatured Type I, II, and III collagen were studied in an IgG-induced animal model of immune synovitis. Immune response was measured as augmented [3H]thymidine incorporation by spleen cells on exposure to antigen. Immune responses were observed in vitro after 72 hr of culture with antigen, while a majority of responses to antigens occurred after 96 hr of incubation. Separation of spleen cell subpopulations showed that measured immune responses were of T-cell origin. In vitro cell-mediated immune responses were observed for native and denatured collagen in splenic cell cultures from six of seven synovitic rabbits (P less than 0.01) but not in control spleen cell cultures derived from normal, adjuvant-primed or IgG-immune nonsynovitic rabbits. The incidence of cellular reactivity to incubation with native interstitial collagens was as follows: Type I, 43%; Type II, 43%; Type III, 57%. The incidence of in vitro immune responses to denatured collagens in cultures derived from rabbits with synovitis was: Type I, 50%; Type II, 50%; Type III, 67%. The relatively high incidence of immune response to both native and denatured collagens suggests that immunity to structural components of the synovial membrane and the adjacent surface of articular cartilage may play a role in the inflammation observed in immune synovitis.  相似文献   

11.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

12.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

13.
Collagen of articular cartilage   总被引:1,自引:0,他引:1  
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

14.
Binding of fibronectins (FN) to collagen types I-IV were studied using polyclonal antibodies against human and chicken FNs, proteoglycan monomers, collagen type II and monoclonal antibodies reacting with both soluble and insoluble forms of human FN. Plasma fibronectin and type II collagen were shown to interact specifically in a homologous system. Type II collagen, however, proved to be less effective in inhibition assays compared to other types of collagen. In high density cultures of chicken limb bud cells, fibronectin was first localized within the fibroblast-like cells of 4 hr cultures and an extensive extracellular filamentous network developed by the end of day 1. Fibronectin was present in the newly formed cartilage nodules although it seemed to disappear by day 6, when the proteoglycan accumulation became more intensive. Enzyme treatments (testicular hyaluronidase, chondroitinase ABC) helped to localize FN at this stage of development of chicken cartilage, in microdroplet high density cultures of human fetal chondrocytes and in articular cartilage. Fibronectin was localized only in the pericellular ring of intact human articular cartilage using monoclonal antibodies with the biotin-avidin system.  相似文献   

15.
Types I and III collagens were solubilized from fetal human skin by limited digestion with pepsin and precipitated by dialysis against 0.02 M Na2HPO4. Heat denaturation of the collagens in 2 M guanidine-HCl, pH 7.5, resulted in the precipitation of the contaminant pepsin which could be removed by centrifugation. Renaturation of the denatured collagens by dialysis against deionized water at 22° for 2 hours selectively precipitated the type III collagen fibrils. Type I collagen remained in solution. The simplicity and high recovery (77%) make this a suitable approach for the rapid estimation of type III collagen in small tissue samples.  相似文献   

16.
Cartilage fibrils contain collagen II as the major constituent, but the presence of additional components, minor collagens, and noncollagenous glycoproteins is thought to be crucial for modulating several fibril properties. We have examined the distribution of two fibril constituents—decorin and collagen IX—in samples of fibril fragments obtained after bovine cartilage homogenization. Decorin was preferentially associated with a population of thicker fibril fragments from adult articular cartilage, but was not present on the thinnest fibrils. The binding was specific for the gap regions of the fibrils, and depended on the decorin core protein. Collagen IX, by contrast, predominated in the population with the thinnest fibrils, and was scarce on wider fibrils. Double-labeling experiments demonstrated the coexistence of decorin and collagen IX in some fibrils of intermediate diameter, although most fibril fragments from adult cartilage were strongly positive for one component and lacked the other. Fibril fragments from fetal epiphyseal cartilage showed a different pattern, with decorin and collagen IX frequently colocalized on fragments of intermediate and large diameters. Hence, the presence of collagen IX was not exclusive for fibrils of small diameter. These results establish that articular cartilage fibrils are biochemically heterogeneous. Different populations of fibrils share collagen II, but have distinct compositions with respect to macromolecules defining their surface properties.  相似文献   

17.
The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bone formation contained type IX collagen, whereas periosteal and membranous bones were negative. The thin collagenous fibrils in cartilage consisted of type II collagen as determined by immunoelectron microscopy. Type IX collagen was associated with the fibrils but essentially was restricted to intersections of the fibrils. These observations suggested that type IX collagen contributes to the stabilization of the network of thin fibers of the extracellular matrix of cartilage by interactions of its triple helical domains with several fibrils at or close to their intersections.  相似文献   

18.
Aggregation of platelets by fibrils formed from collagens type I, II and III could be inhibited by coating the fibrils with anti-collagen antibodies or Fab fragments. Similar results were obtained in a clot-retraction assay. Inhibition was achieved with stoichiometric amounts of antibodies and was specific for each type of collagen. Aggregation caused by a mixture of type-I and -III collagens could only be inhibited by a mixture of antibodies against both collagens. The data show that each interstitial collagen is capable of interacting with platelets and do not support the concept of an outstanding activity of type-III collagen.  相似文献   

19.
Cartilage contains mixed fibrils of collagen types II, IX, and XI   总被引:31,自引:7,他引:24       下载免费PDF全文
The distribution of collagen XI in fibril fragments from 17-d chick embryo sternal cartilage was determined by immunoelectron microscopy using specific polyclonal antibodies. The protein was distributed throughout the fibril fragments but was antigenically masked due to the tight packing of collagen molecules and could be identified only at sites where the fibril structure was partially disrupted. Collagens II and IX were also distributed uniformly along fibrils but, in contrast to collagen XI, were accessible to the antibodies in intact fibrils. Therefore, cartilage fibrils are heterotypically assembled from collagens II, IX, and XI. This implies that collagen XI is an integral component of the cartilage fibrillar network and homogeneously distributed throughout the tissue. This was confirmed by immunofluorescence.  相似文献   

20.
Collagen fibrils from the dermis of Sepia officinalis were processed for immunoelectron microscopy to reveal reactions to antibodies against mammalian types I, III, and V, teleost type I and cephalopod type I-like collagens, by single and double immunogold localization. The fibrils were observed: (a) in suspensions of prepared fibrils, (b) in ultrathin sections of embedded fibril preparations, and (c) in ultrathin sections of dermal tissue. Some samples were subjected to acetic acid or urea dissociation. It was found that collagen fibrils from Sepia dermis are heterotypic in that they are composed of type I-like and type V collagens. Type I-like collagen epitopes were present mainly at the periphery of the fibrils; type V collagen epitopes were present throughout the fibrils. This is the first demonstration that collagen fibrils from an invertebrate are heterotypic, suggesting that heterotypy may be an intrinsic characteristic of the fibrils of fibrillar collagens, independent of evolutionary or taxonomic status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号