首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bibikov NG  Dymov AB 《Biofizika》2007,52(6):1073-1086
The analysis of statistical characteristics of spontaneous activity (distribution of interpulse intervals, hazard function, autocorrelation function, autocorrelation function for a process with shifted intervals, interdependence between adjoining intervals) for 123 units located in the cochlear nucleus of the frog has been performed. In the majority of cells, this activity was distinct from the poissonic process, and in some cases firing periodicity was noticed. Besides, deviations of the spontaneous activity from the renewal process were usually observed. A reliable positive correlation of interpulse intervals was typical for the majority of the units, though in some cases a negative correlation of short adjoining intervals was revealed. The data indicate the occurrence of effects of memory in the activity of single units of the acoustical system.  相似文献   

2.
The firing activity of 104 neurons from the medullar dorsal nucleus (homologous to the mammalian cochlear nucleus complex) of immobilized common frogs (Rana t. temporaria) was recorded extracellularly in the absence of external auditory stimuli. This background activity was analyzed by using stochastic point process parameters such as the coefficient of variation, local coefficient of variation, interdependence of neighboring intervals, interpulse interval distribution, autocorrelation, and hazard function. All these parameters were put in correspondence with bursting rate, i.e., relative number of interpulse intervals grouped in clusters, or bursts, determined by the proposed method. Neurons with pronounced refractoriness, as a rule, exhibited lower bursting rates whereas neurons with a distinct maximum of the correlation function showed higher values than expected from a random Poisson process. However, even in the latter group of cells, bursting rates usually did not decrease after random shuffling of all the interpulse intervals. As a result, we must admit the absence of clustered spontaneous activity in second-order auditory neurons in the amphibian species studied. These data are compared with the specificities of spontaneous firing activity in different parts of the mammalian auditory pathway.  相似文献   

3.
Spontaneous unit activity recorded extracellularly from the caudate nucleus in acute experiments on cats was analyzed. A graph of the sliding mean frequency, an interspike interval histogram, correlogram, intensity function, and histogram of correlation between adjacent intervals were plotted for the spontaneous activity of each neuron. The spontaneous activity of neurons of the caudate nucleus showed considerable variability in time and its mean frequency varied for different neurons from 0.5 to 20 spikes/sec. Depending on the temporal pattern of the spikes and also on the statistical indices, spontaneous unit activity in the caudate nucleus was conventionally divided into two types: single and grouped. A switch from one type of activity to the other was observed for the same neuron. On the basis of the data as a whole it is impossible to regard the spontaneous unit activity of the caudate nucleus as a simple random (Poissonian) spike train.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 369–376, July–August, 1977.  相似文献   

4.
Spontaneous and evoked unit activity of the superior colliculus was studied in cats immobilized with gallamine or with the spinal cord divided (encephalé isolé). Statistical parameters of unit activity were calculated in light and darkness and in the presence of a moving photic stimulus. Spontaneously active neurons were divided into four main groups: 1) with a mean interspike interval of about 300 msec, coefficient of variation 1.9, and with two modes in the autocorrelation histogram; 2) with similar statistical parameters but distinguished by correlation with saccadic eye movements; 3) histogram of interspike intervals exponential in type, autocorrelation histogram flat, mean interval and standard deviation about 100 msec; 4) with symmetrical distribution of interspike intervals, mean interval about 50 msec, coefficient of variation 0.4–0.5. Spontaneous activity in light and darkness differed only in the neurons of the second group. Comparison of the statistical parameters of the spontaneous and evoked activity shows that encoding of the stimulus could be carried out by neurons of groups 3 and 4. In some cases the mode of the histogram of interspike intervals and the standard deviation changed significantly and activity appeared regularly in the autocorrelation histogram.  相似文献   

5.
Spontaneous unit activity in association area 5 and some projection areas of the cortex (first somatosensory, first and second auditory areas) were studied in cats immobilized with D-tubocurarine in which the index of specific spontaneous activity, the mean frequency, types of spontaneous activity, and statistical parameters — distribution of interspike intervals and autocorrelation function — were determined. The results showed that spontaneous unit activity in the association area differs from that in the projection areas in both intensity and character. A special feature of the spontaneous activity of the auditory areas was a well-marked volley distribution of activity. In the somatosensory area the level of spontaneous activity as reflected in all indices was the lowest. In the association cortex the largest number of neurons with spontaneous activity lay at a depth of 500–1000 µ corresponding to cortical layers III–IV. In the first auditory area neurons with spontaneous activity were concentrated at a depth of 1400 µ (layer V) and in the somatosensory area at a depth of 1000–1400 µ (alyers IV–V). The possible functional significance of these differences is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 13–21, January–February, 1976.  相似文献   

6.
Responses of single neurons to tonal signals amplitude-modulated by repeating segments of lowfrequency noise were studied in the dorsal (cochlear) medullary nucleus and midbrain auditory center (torus semicircularis) of the grass frog Rana temporaria. An autocorrelation function of the response to a total presentation and a shuffled autocorrelation function were derived. The latter was obtained by correlating the impulse response to each segment of the modulated signal with responses to all other segments with the exception of the initial one. After the necessary normalization, the function differed from the initial autocorrelation only in lacking postspike changes in excitability. A delay dependence of the ratio of the two functions directly demonstrated the time course of the postspike change in excitability of the studied cell. The majority of second-order neurons, which are in the dorsal nucleus of the medulla oblongata, were characterized only by brief intervals of absolute and relative refractoriness. However, cells with excitability that was markedly facilitated immediately after the refractory period were observed even in this nucleus. Neurons with a complex pattern of postspike changes in excitability were detected in the torus semicircularis. In these cells, a comparatively long postspike decrease in excitability was usually interrupted by intervals in which the neuron sensitivity was significantly higher than normal. The results demonstrate that spike generation has a marked effect on subsequent activity in brainstem auditory units. The effects may play an important role in the formation of the temporal pattern of neuronal responses to auditory signals.  相似文献   

7.
A most prominent feature of neurons in the suprachiasmatic nucleus (SCN) is the circadian rhythm in spontaneous firing frequency. To disclose synaptic mechanisms associated with the rhythmic activity, the spontaneous postsynaptic activity was studied using whole-cell, patch clamp recordings in the ventral region of the SCN in slice preparations from rats. The synaptic events were compared between two time intervals corresponding to the highest and lowest electrical activity within the SCN during subjective daytime and nighttime, respectively. The gamma-aminobutyric acid (GABA)-mediated spontaneous inhibitory activity showed no diurnal variations, but the excitatory activity was markedly higher in frequency, without differences in amplitude, during the subjective day compared to the subjective night. Spontaneous and evoked inhibitory synaptic events were blocked by the GABA(A) receptor antagonist bicuculline. The alpha-amino-hydroxy-5-methylisoxazole-4-propionic acid (AMPA/kainate) receptor antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) blocked most of the excitatory activity. In addition, CNQX reduced the spontaneous inhibitory activity. The N-methyl-D-aspartate antagonist D-2-amino-5-phosphonopentanoic acid reduced the inhibitory activity to a lesser degree, and there was no significant difference in amplitude or frequency of synaptic events in control and Mg2+-free solutions, indicating that the AMPA receptor plays an important role in regulating the inhibitory release of GABA within the SCN. Ipsi- and contralateral stimulation of the SCN consistently evoked excitatory synaptic responses. Inhibitory synaptic responses occurred in some neurons upon increasing stimulus strength. In conclusion, this study shows that there is a substantial influence from spontaneous glutamatergic synapses on the ventral part of the SCN and that these exhibit daily variations in activity. Diurnal fluctuations in spontaneous excitatory postsynaptic activity within this network may contribute to the mechanisms for synchronization of rhythms between individual SCN neurons and may underlie the daily variations in the spontaneous firing frequency of SCN neurons.  相似文献   

8.
For a statistical analysis of spontaneous activity of cortical pyramidal neurons (PN) of the cat, recordings were obtained from axons of those neurons descending in the lateral pyramidal tract in lumbar segments of the spinal cord. Spontaneous activity of all investigated PN is not random in sequence but has a complex temporal structure. Three types of spontaneous activity were distinguished by the character of distribution of the interspike intervals (ISI); the degree of grouping of the spikes into volleys separated by long intervals increases from type I to type III. Type III is more often found in PN with fast-conducting axons. As a rule the number of volleys in the spontaneous activity differed from that expected by the hypothesis of random spike sequence. In some cases repetition of volleys with an identical, or nearly identical, temporal structure was observed. It is postulated that the type of spontaneous activity is determined by the functional state of the neuron and by its morphological properties. Experiments were carried out on two groups of animals: 1) briefly anesthetized a long time before the recording was obtained, and then immobilized; 2) anesthetized with chloralose and Nembutal. The differences between the character of spontaneous PN activity were mainly in the degree of grouping of the spikes (which was greater in the second group). Significant positive correlation was found between the velocity of conduction along the PN axon and the mean ISI of the spontaneous activity.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 1, pp. 3–11, January–February, 1972.  相似文献   

9.
Activity of neuron pairs in the caudate nucleus, derived simultaneously by a single microelectrode, was investigated in experiments on lightly anesthetized, immobilized cats. Strong temporal correlation was shown to be characteristic of the spontaneous activity of a neuron pair if grouped discharges were present in that activity. If, however, spontaneous activity was characterized by impulses randomly distributed in time, temporal correlation was observed in only 50% of cases, it was weaker, and it reflected excitatory and inhibitory interactions equally. In many cases negative correlation was observed in discharges of neurons within the time interval of 0–4 msec. Electrical stimulation of the various afferent inputs of the caudate nucleus not only did not cause correlation to appear in the discharges of the neurons but, on the contrary, it abolished correlation which existed for that same pair of neurons discharging spontaneously. Comparison of the results with data in the literature indicates that, by the character of interaction of its neurons, the caudate nucleus is one of the group of associative nuclei of the brain.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 486–493, September–October, 1978.  相似文献   

10.
The results of a computerized statistical analysis of 366 realizations of spontaneous spike activity of 181 neurons in the primary auditory cortex (area 50) of waking cats at rest and during defensive conditioning are described. In both situations the parameters of spontaneous activity of most neurons differed from those of a random flow. Conditioning led, on the one hand, to a stable increase in the frequency of spontaneous activity in intertrial periods and, on the other hand, judging from changes in the mean firing rate, the coefficients of variation of the length of the interspike intervals, the histograms of their distribution, and also the increase in the number of neurons with different forms of correlation between interspike intervals, to an increase in its stability (degree of organization).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 227–238, May–June, 1978.  相似文献   

11.
The effect of destruction of afferent inputs on relations between types of spontaneous unit activity, its mean frequency, the distribution of minimal and maximal intervals, and the character of neuronal interconnection in the neostriatum was studied in acute experiments on rats immobilized with D-tubocurarine. In addition, spontaneous activity derived from neurons in slices of rat neostriatum was analyzed. Spontaneous activity of grouped type was not observed, and no positive symmetrical maxima in the zero region were present on graphs of cross-correlation function. The results of the investigation showed that the grouped type of spontaneous activity is determined by activity of the cortical input whereas activity of the thalamic input has a tendency to prevent the development of this type of neostriatal unit activity. Activation of the cortical input also was shown to be probably responsible for the presence of a positive symmetrical peak on the cross-correlation function graph for neurons with the grouped type of spontaneous activity.Institute of Biological Physics, Academy of Sciences of the USSR, Puchchino-on-Oka. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 110–115, January–February, 1984.  相似文献   

12.
Spike activity of 95 neurons in the rabbit basal forebrain forebrain magnocellular nucleus was recorded during spontaneous behavior and instrumental conditioned performance. Almost half of the neurons (48.4%) displayed a significant (p > 0.05) negative correlation between their spontaneous discharge rate and the power of the delta rhythm in the EEG of the frontal cortex; most of these cells can be classified as projection cholinergic neurons. During instrumental conditioned performance, neurons of this subgroup responded with excitation to the conditioned stimulus, whereas presumably noncholinergic nonprojection neurons responded to the conditioned stimulus with inhibition. Excitatory response of cells in the basal forebrain magnocellular nucleus was significantly more intense as compared to trials without the conditioned reaction. On the whole, our data testify that the basal forebrain magnocellular nucleus maintains the level of arousal and attention required for the instrumental conditioned performance.  相似文献   

13.
The instantaneous firing frequency of cat abducens nucleus motoneurons (Mns) during spontaneous saccadic eye movements has been analyzed. Recordings were carried out from both control and axotomized Mns. Firing frequency of control Mns increased gradually during the first four to five interspike intervals, at which point maximum firing frequency was reached. Axotomized Mns showed an increase in firing frequency only up to the second or third interval, decreasing rapidly then. Linear relationships, with high correlation coefficients, were established between the first five intervals versus maximum frequency or peak eye velocity during saccades, in both control and axotomized Mns. However, the latter showed a decrease in the linear correlation from the third interval because of the decrease in the slope of the relationship. Functional implications of these results are discussed according to the present hypothesis on the effects of axotomy upon oculomotor neurons.  相似文献   

14.
Aims To test a key prevision of the dynamic equilibrium theory of island biogeography, namely that changes in species numbers on islands over time (hereafter, species trajectories) are equilibrial, and to characterize aspects of the dynamical properties of species change over time using a model‐independent test. Methods We tested for regulatory equilibrium and non‐random structure in species numbers through time by comparing observed correlation coefficients at lag‐k for species trajectories from four true islands and two habitat islands. First, we estimated the shape of the autocorrelation function for each observed species trajectory by calculating correlation coefficients of the observed data between pairs of values Nt?k and Nt separated by lag‐k (k = 1, 2, …, N ? 1). Second, we tested the observed correlation coefficients at each lag against a distribution of correlation coefficients generated by randomly ordering observed numbers in the species trajectories. Results The patterns of autocorrelation functions for all but one of the observed species trajectories did not exhibit evidence of regulatory equilibrium, and, in fact, closely matched what would be expected from a non‐stationary or ‘random walk’ process. The majority of the correlation coefficients generated from the observed species trajectories did not deviate significantly from correlation coefficients produced by the randomized trajectories. However, there was strong evidence of unusual positive autocorrelation at small time lags for birds on islands measured annually (2‐ to 4‐year lags) and for arthropods on islands measured weekly (7‐ to 8‐week lags), suggesting some degree of structure in change in species richness over time. Main conclusions The autocorrelation function patterns for all but one of the observed species trajectories showed various forms of non‐stationarity. These types of patterns suggest that the numbers of species through time gradually wandered away from their initial sizes. Our model‐independent test of individual correlation coefficients revealed significant structure in the observed species trajectories. These trajectories appear to be non‐random at relatively short lag intervals, indicating a process with short memory.  相似文献   

15.
The discharge activity of 637 neurons of the human subthalamic nucleus (STN), which were extracellularly recorded during twelve stereotactic surgeries in patients with Parkinson’s disease, has been analyzed. On the basis of the parameters of interspike intervals (ISIs), we have distinguished three major patterns of spontaneous neuronal activity: bursting neurons, regular tonic and irregular tonic neurons. Parametric analysis has enabled us to determine the values of basic parameters in the activity of these three distinguished types of neurons. It has been shown that the representativeness and the activity parameters of three different patterns change in the dorsoventral direction of the STN from the motor to the associative regions. The results will allow researchers to perform targeted search of pathological neuronal activity patterns associated with the motor symptoms of Parkinsonism.  相似文献   

16.
Interaction between spike responses of 41 cerebellar cortical neurons to electrical stimulation of the two forelimbs with different intervals between stimuli were studied in cats anesthetized with chloralose and pentobarbital. The responsiveness of neurons with a phasic type of discharge to testing stimulation of the limb was reduced for 300–500 msec or longer after conditioning stimulation of the other limb. Interaction between the responses was less clear in neurons with a tonic type of response. Interaction was absent or was summating in character if the stimuli were applied at the same times. Only if the intertrial intervals were 50–150 msec was regular inhibition of the responses of tonic type to the testing stimulus observed. It is postulated that the nucleus of the inferior olive participates in the interaction between phasic unit responses during simultaneous stimulation of the two limbs or to stimulation separated by short intervals (under 30 msec). With longer intervals between stimuli, interaction between responses of either type is connected with involvement of the lateral reticular nucleus. In the process of interaction competitive relations may develop between responses caused by impulses reaching neurons of the cerebellar cortex along climbing and mossy fibers.  相似文献   

17.
The purpose of this study was to investigate the influence of the pedunculopontine nucleus (PPN) on the electrical activity of entopeduncular nucleus (EP) in the rat and to analyze the influence of the subthalamic nucleus (STN) on the PPN-evoked responses of EP cells. Most of the EP neurons recorded (65.1%) were identified electrophysiologically as output cells projecting to the lateral habenula while only a minority (3.8%) were output cells to the PPN. Stimulation of the PPN in intact rats caused a short-latency (2.5 +/- 2.0, S.D. ms) activation in 22.6% and suppression of activity in 8.5% of EP neurons recorded. The mean impulse rate of EP neurons in intact rats was 27.0 +/- 5.5, S.D. imp./s and the overall mean interspike interval 36.8 +/- 7.1, S.D. ms. In rats where the PPN had been destroyed 10-12 days before recording by a local microinjection of kainic acid only a few EP neurons were still responsive to stimulation of the PPN showing suppression of activity. In these rats the kainate lesion slowed the impulse spontaneous activity to 14.3 +/- 6.3, S.D. imp./s and markedly altered the distribution of interspike intervals in 62.5% of the EP neurons recorded. The overall mean interspike interval in this group of deregulated neurons was 68.2 +/- 20.1, S.D. ms. A small kainate lesion of the STN placed 4-5 days before recording, on the other hand, did not affect the spontaneous activity of EP cells but increased the percentage of cells which were activated (43.6%) by stimulating the PPN. The present data demonstrate a predominant activatory influence of the PPN on EP cells and suggest that destruction of the STN may affect the responsiveness of entopeduncular cells to stimulation of the PPN possibly through the removal of a tonic inhibitory STN influence on the EP.  相似文献   

18.
The intrinsic membrane and firing properties of medial vestibular nucleus (MVN) neurons were investigated in slices of the chick brainstem using intracellular recording and current injection. Avian MVN neurons fired spontaneous action potentials with very regular interspike intervals. The rapid repolarization of all action potentials was followed by an after-hyperpolarization. Intracellular injection of steps of hyperpolarizing current revealed both an inward rectification of the membrane potential during the step and a rebound depolarization following the offset of the step. In some neurons, the rebound depolarization resulted in bursts of action potentials. Steps of depolarizing current applied to spontaneously active neurons evoked increases in firing rate that were higher at the onset of the step than during the steady-state response. The relationship between current and firing rate was linear. The membrane and firing properties of avian MVN neurons were distributed continuously across the population of recorded neurons. These properties appear identical to those of rodent MVN neurons, suggesting that the composition and distribution of ion channels in the MVN neuronal membrane has been highly conserved across vertebrate species.Abbreviations MVN medial vestibular nucleus - VOR vestibulo-ocular reflex - AHP after-hyperpolarization  相似文献   

19.
Statistical properties of spontaneous firing were studied in 79 single auditory units located in the dorsal medullar (cochlear) nucleus of unanaesthetized curarized marsh frogs (Rana ridibunda). The great majority of these units showed irregular spontaneous activity with mean rates in the range 1–30 spikes · s–1. In 53% of the cells the auto-renewal functions of the spontaneous activity monotonically rose to an asymptotic value, but 41% of the cells produced auto-renewal functions which showed a pronounced peak after a dead-time period. Five low-frequency auditory neurons revealed periodic firing in the absence of controlled stimuli. The preferred period did not correspond to the unit's best frequency but demonstrated a modest correlation with the best modulation frequency of the unit's response to amplitude-modulated tones and with the duration of the after-onset dip in peri-stimulus time histograms.Abbreviations AM amplitude modulation - ARF auto-renewal function - DMN dorsal medullar nucleus - PST peristimulus time - SA spontaneous activity - TID time interval distribution - RMG response modulation gain  相似文献   

20.
The effect of frontoparietal sensorimotor (FPSM) cortex stimulation on both the spontaneous and the noxious evoked activity of neurons in the lateral reticular nucleus (LRN) was tested in barbiturate-anesthetized rats. Ninety-three LRN neurons that responded to a noxious heat stimulus (HS) were recorded (72% antidromically fired from the cerebellum). Of these, 66 neurons altered their spontaneous firing rates in response to cortical stimulation. Two patterns of responses were found: either an excitation followed by a suppression of spontaneous activity (52 neurons), or a pure suppression of spontaneous activity lasting 50-400 msec (14 neurons). In 46 of these neurons, it was found that cortical stimulation reduced HS-evoked activity to near the baseline level. Furthermore, it was found that when applied after a prolonged cortical stimulation, the HS was ineffective. It is concluded that FPSM cortex can influence nociceptive information in LRN neurons that respond to its stimulation, possibly interfering with the mechanisms underlying stimulation-produced analgesia (SPA). In this context, it is proposed that the cortex can modulate the activity of LRN neurons that activate, through local loops, a descending antinociceptive system and also a separate projection system to the cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号