首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During etoposide-induced apoptosis in HL-60 cells, cytochrome c release was associated with mitochondrial swelling caused by increased mitochondrial potassium uptake. The mitochondrial permeability transition was also observed; however, it was not the primary cause of mitochondrial swelling. Potassium uptake and swelling of mitochondria were blocked by bcl-2 overexpression. As a result, cytochrome c release was reduced, and apoptosis delayed. Residual cytochrome c release in the absence of swelling in bcl-2 expressing cells could be due to observed Bax translocation into mitochondria. This study suggests several novel aspects of apoptotic signaling: (1) potassium related swelling of mitochondria; (2) inhibition of mitochondrial potassium uptake by bcl-2; (3) co-existence within one system of multiple mechanisms of cytochrome c release: mitochondrial swelling and swelling-independent permeabilization of the outer mitochondrial membrane.  相似文献   

2.
To understand the roles of bcl-2 for the survival of leukemic cells, we constructed human leukemic HL60 transformant lines in which full length bcl-2 antisense message was conditionally expressed by a tetracycline-regulatable expression system. Cell growth was completely inhibited after antisense message induction and massive cell death was induced. Electron microscopic examinations show that cells died by autophagy, but not by apoptosis. The morphology and the function of mitochondria remained intact: neither the reduction in mitochondrial membrane potential nor the nuclear translocation of AIF, a mitochondrial protein that translocates to nuclei in cases of apoptosis, was observed. Caspase inhibitors did not rescue bcl-2-antisense-mediated autophagy. Thus, bcl-2 is essential for leukemic cell survival and its down-regulation results in autophagy. Cell Death and Differentiation (2000) 7, 1263 - 1269.  相似文献   

3.
We performed immunoelectronmicroscopy, immunofluorescence and subcellular fractionation studies of insect cells (Spodopetra frugiperda or SF9) infected with recombinant baculovirus containing bcl-2 cDNA to determine the cellular localization of the bcl-2 product. Similar studies were also undertaken in pre-B cells carrying a bcl-2 gene activated by t(14;18) chromosomal translocation. By immunogold electron microscopy, bcl-2 was localized at several intracellular sites including the nuclear membrane, endoplasmic reticulum, mitochondria and plasma membrane. Immunofluorescence studies revealed the presence of the bcl-2 product throughout the cytoplasm, whereas biochemical fractionation studies indicated a similar pattern to that observed on electron microscopy. Our investigation clearly indicates that the bcl-2 product is expressed at several intracellular sites. Studies were also undertaken to determine any changes in the subcellular distribution of bcl-2 protein following glucocorticoid exposure of immature B lymphocytes. Although no major changes in the distribution of bcl-2 protein were observed, more aggregated patches of gold labelled bcl-2 particles were found under glucocorticoid stress. Aggregation of bcl-2 molecules might represent dimerization necessary to prevent apoptosis.  相似文献   

4.
The breast cancer regulatory protein-1 (BRCA1)-associated RING domain 1 (BARD1) gene is mutated in a subset of breast/ovarian cancers. BARD1 functions as a heterodimer with BRCA1 in nuclear DNA repair. BARD1 also has a BRCA1-independent apoptotic activity. Here we investigated the link between cytoplasmic localization and apoptotic function of BARD1. We used immunofluorescence microscopy and deconvolution analysis to resolve BARD1 cytoplasmic staining patterns and detected endogenous BARD1 at mitochondria. BARD1 was also detected in mitochondrial cell fractions by immunoblotting. The targeting of BARD1 to mitochondria was modestly stimulated by DNA damage and did not require BRCA1 as indicated by RNA interference and peptide-competition experiments. Transiently expressed yellow fluorescence protein-BARD1 localized to mitochondria, and the targeting sequences were mapped to both the N and C terminus of BARD1. Ectopic yellow fluorescence protein-BARD1 induced apoptosis and loss of mitochondrial membrane potential in MCF-7 breast tumor cells. BARD1 apoptotic function was associated with stimulation of Bax oligomerization at mitochondria. This distinguishes it from BRCA1, which is pro-apoptotic but did not induce Bax oligomerization. The cancer-associated BARD1 splice-variant DeltaRIN (lacks the BRCA1 binding domain and ankyrin repeats) was recruited to mitochondria but did not stimulate apoptosis or alter membrane permeability. We propose that BARD1 has two main sites of action in its cellular response to DNA damage, the nucleus, where it promotes cell survival through DNA repair, and the mitochondria, where BARD1 regulates apoptosis.  相似文献   

5.
The functional state of isolated mitochondria and specifically the integrity of the inner membrane, were investigated in the liver of rats made siderotic by dietary supplementation with carbonyl iron. The concentration of iron in the hepatic tissue increased progressively up to nearly 40 days and reached a steady-state level. When the iron content reached a threshold value (higher than 90 nmol/mg protein) the occurrence of in vivo lipid peroxidation in the mitochondrial membrane was detected. This process did not result in gross alterations in the mitochondrial membrane, as indicated by electron microscopy, phosphorylative capability and membrane potential measurements. On the contrary, the induction of lipoperoxidative reaction appeared to be associated with the activation of Ca2+ release from mitochondria. This was shown to occur as a consequence of rather subtle modifications in the inner membrane structure via a specific efflux route, which appeared to be linked to the oxidation level of mitochondrial pyridine nucleotides. The induction of this Ca2+ release from iron-treated mitochondria resulted in enhancement of Ca2+ cycling, a process which dissipates energy to reaccumulate into mitochondria the released Ca2+. The perturbation in mitochondrial Ca2+ homeostasis reported here may be a factor in the onset of cell damage in this experimental model of hepatic iron overload.  相似文献   

6.
Mitochondrial alterations in human gastric carcinoma cell line   总被引:1,自引:0,他引:1  
We compared mitochondrial function, morphology, and proteome in the rat normal gastric cell line RGM-1 and the human gastric cancer cell line AGS. Total numbers and cross-sectional sizes of mitochondria were smaller in AGS cells. Mitochondria in AGS cells were deformed and consumed less oxygen. Confocal microscopy indicated that the mitochondrial inner membrane potential was hyperpolarized and the mitochondrial Ca2+ concentration was elevated in AGS cells. Interestingly, two-dimensional electrophoresis proteomics on the mitochondria-enriched fraction revealed high expression of four mitochondrial proteins in AGS cells: ubiquinol-cytochrome c reductase, mitochondrial short-chain enoyl-coenzyme A hydratase-1, heat shock protein 60, and mitochondria elongation factor Tu. The results provide clues as to the mechanism of the mitochondrial changes in cancer at the protein level and may serve as potential cancer biomarkers in mitochondria. two-dimensional gel electrophoresis proteomics; biomarker; cancer  相似文献   

7.
Bcl-2, an anti-apoptotic protein, is believed to be localized in the outer mitochondrial membrane, endoplasmic reticulum, and nuclear envelope. However, Bcl-2 has also been suggested as playing a role in the maintenance of mitochondrial membrane potential, indicating its possible association with the inner mitochondrial membrane. We therefore further examined the exact localization of Bcl-2 in mitochondria purified from wild-type and bcl-2-transfected PC12 cells and pre- and postnatal rat brains. Double immunostaining demonstrated that Bcl-2 was co-localized with subunit beta of F1F0ATPase in the inner mitochondrial membrane. Biochemical analysis of isolated mitochondria using digitonin and trypsin suggests an association of Bcl-2 with the inner mitochondrial membrane. More interestingly, the majority of Bcl-2 disappeared from the inner membrane of mitochondria when cultured under serum deprivation. These results suggest that Bcl-2 acts as an anti-apoptotic regulator by localizing mainly to the inner mitochondrial and smooth ER membranes.  相似文献   

8.
The preparative isolation of mitochondria from Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
A "hybrid" discontinuous gradient consisting of 6% Percoll overlaid on metrizamide separated mitochondria from other organelles in a Chinese hamster ovary cell postnuclear supernatant in a single 15-min centrifugation. The mitochondrial preparation contained about 25% of the mitochondrial marker, cytochrome-c oxidase, in a form that was about 90% latent. Based on the postnuclear supernatant, cytochrome-c oxidase activity was enriched approximately 45-fold. Trace amounts of lysosomal, rough endoplasmic reticular, Golgi, peroxisomal, plasma membrane, and cytosolic markers were found in the preparation. Electron microscopy revealed that the preparation consisted almost exclusively of mitochondria with only minor amounts of contaminating organelles. Analysis of the mitochondrial preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the mitochondrial preparation had a unique protein profile compared to the postnuclear supernatant and other gradient interfaces. Separation of the mitochondria into membrane and lumenal (matrix) fractions by treatment with 100 mM Na2CO3, pH 11.5, also indicated that the mitochondria were intact; they were rich in lumenal proteins. The data indicate that the mitochondria represent maximally about 2.2% of Chinese hamster ovary cell postnuclear supernatant protein. These isolated mitochondria should prove useful for problems in molecular cell biology.  相似文献   

9.
《The Journal of cell biology》1995,128(6):1173-1184
A family of genes related to the bcl-2 protooncogene has recently emerged. One member of this family, mcl-1, was cloned from a human myeloblastic leukemia cell line (ML-1) undergoing differentiation. The intracellular localization of mcl-1, as well as the kinetics of its expression during differentiation, have now been studied. These studies show that the intracellular distribution of mcl-1 overlaps with, but is not identical to, that of bcl-2: mcl-1 is similar to bcl-2 in that the mcl-1 protein has a prominent mitochondrial localization, and in that it associates with membranes through its carboxyl hydrophobic tail. mcl- 1 differs from bcl-2, however, in its relative distribution among other (nonmitochondrial/heavy membrane) compartments, mcl-1 also being abundant in the light membrane fraction of immature ML-1 cells while bcl-2 is abundant in the nuclear fraction. Similarly, in differentiating ML-1 cells, the timing of expression of mcl-1 overlaps with, but is not identical to, that of bcl-2: the mcl-1 protein increases rapidly as cells initiate differentiation, and mcl-1 is a labile protein. In contrast, bcl-2 decreases gradually as cells complete differentiation. Overall, the mcl-1 and bcl-2 proteins have some properties in common and others tht are distinct. A burst of expression of mcl-1, prominently associated with mitochondria, complements the continued expression of bcl-2 in ML-1 cells differentiating along the monocyte/macrophage pathway.  相似文献   

10.
Proper functioning of the mitochondria is crucial for the survival of the cell. Viruses are able to interfere with mitochondrial functions as they infect the host cell. Parvoviruses are known to induce apoptosis in infected cells, but the role of the mitochondria in parvovirus induced cytopathy is only partially known. Here we demonstrate with confocal and electron microscopy that canine parvovirus (CPV) associated with the mitochondrial outer membrane from the onset of infection. During viral entry a transient depolarization of the mitochondrial transmembrane potential and increase in ROS level was detected. Subsequently, mitochondrial homeostasis was normalized shortly, as detected by repolarization of the mitochondrial membrane and decrease of ROS. Indeed, activation of cell survival signalling through ERK1/2 cascade was observed early in CPV infected cells. At 12 hours post infection, concurrent with the expression of viral non-structural protein 1, damage to the mitochondrial structure and depolarization of its membrane were apparent. Results of this study provide additional insight of parvovirus pathology and also more general information of virus-mitochondria association.  相似文献   

11.
Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells   总被引:15,自引:0,他引:15  
The Bcl-2 family of proteins comprises both cell death inhibiting and cell death promoting members, generally believed to be cytoplasmic and predominantly membrane-associated. Like Bcl-2, many Bcl-2-related proteins contain a C-terminal membrane insertion domain and much research is aimed at evaluating the functional role of their localization to the outer membranes of mitochondria, the endoplasmic reticulum, and perinuclear membranes. However, confocal fluorescence microscopy of human breast cancer cells and rat colon cancer cells immunostained with commercial antibodies raised against different epitopes of the anti-apoptotic Bcl-2 and the pro-apoptotic Bax protein revealed that these proteins are not only present in the cellular cytoplasm, but also within interphase nuclei. This was confirmed by Western blot analysis of isolated nuclei. In human cells, certain epitopes of Bcl-2, but not of Bax, were also found to be associated with mitotic chromatin. Anti-estrogen treatment of human breast cancer cells or transfection with antisense bcl-2 led to a reduction in both cytoplasmic and nuclear Bcl-2. Transfection of human bcl-2 and bax into rat cells resulted in cytoplasmic and nuclear Bcl-2 and Bax. This data seems in line with increasing evidence that the role of the Bcl-2 family of proteins should be extended to activities inside the nuclear compartment.  相似文献   

12.
13.
摘要 目的:基于肝癌细胞线粒体功能受损和天冬氨酸蛋白水解酶3(caspase-3)信号通路探讨罗哌卡因促进肝癌细胞凋亡的作用机制。方法:选用细胞株人肝癌细胞BEL-7402进行实验研究。用不同浓度罗哌卡因处理BEL-7402细胞后,采用溴化噻唑蓝四氮唑(MTT)法检测肝癌细胞的增殖情况,光镜及4,6-二苯胺-2-苯吲哚二盐酸盐(DAPI)溶液染色观察细胞形态,台盼蓝染色法测定细胞活力,流式细胞术分析BEL-7402细胞的凋亡情况,电子显微镜下观察细胞线粒体,激光共聚焦显微镜观察caspase-3在BEL-7402细胞中的细胞核迁移情况,蛋白免疫印迹试验评价罗哌卡因对细胞质凋亡相关蛋白、线粒体凋亡相关蛋白、BEL-7402细胞和线粒体凋亡相关蛋白表达的影响。结果:罗哌卡因能够抑制肝癌细胞的生长,并呈剂量依赖性和时间依赖性。罗哌卡因可诱导BEL-7402细胞发生凋亡,显著增加BEL-7402细胞的凋亡率。罗哌卡因能够损伤肝癌细胞线粒体功能。激光共聚焦显微镜观察显示caspase-3分子迁移到细胞核。罗哌卡因与caspase-3相互作用,促进caspase-3向细胞核内迁移,刺激caspase-3和聚腺苷二磷酸核糖聚合酶(PARP-1)、天冬氨酸蛋白水解酶9(caspase-9)蛋白的表达,抑制B细胞淋巴瘤-2基因(Bcl-2)的表达,促进凋亡酶激活因子(Apaf-1)的表达,促进线粒体释放细胞色素C(Cytochrome C),激活caspase-3活性。结论:罗哌卡因具有促进肝癌细胞凋亡的作用,其作用机制可能与破坏肝癌细胞线粒体功能和激活caspase-3信号通路有关。  相似文献   

14.

Background

Mitochondria are critical to cardiac injury during reperfusion as a result of damage sustained during ischemia, including the loss of bcl-2. We asked if bcl-2 depletion not only leads to selective permeation of the outer mitochondrial membrane (MOMP) favoring cytochrome c release and programmed cell death, but also favors opening of the mitochondrial permeability transition pore (MPTP). An increase in MPTP susceptibility would support a role for bcl-2 depletion mediated cell death in the calcium overload setting of early reperfusion via MPTP as well as later in reperfusion via MOMP as myocardial calcium content normalizes.

Methods

Calcium retention capacity (CRC) was used to reflect the sensitivity of the MPTP opening in isolated cardiac mitochondria. To study the relationship between bcl-2 inhibition and MPTP opening, mitochondria were incubated with a bcl-2 inhibitor (HA14-1) and CRC measured. The contribution of preserved bcl-2 content to MPTP opening following ischemia-reperfusion was explored using transgenic bcl-2 overexpressed mice.

Results

CRC was decreased in mitochondria following reperfusion compared to ischemia alone, indicating that reperfusion further sensitizes to MPTP opening. Incubation of ischemia-damaged mitochondria with increasing HA14-1concentrations increased calcium-stimulated MPTP opening, supporting that functional inhibition of bcl-2 during simulated reperfusion favors MPTP opening. Moreover, HA14-1 sensitivity was increased by ischemia compared to non-ischemic controls. Overexpression of bcl-2 attenuated MPTP opening in following ischemia-reperfusion. HA14-1 inhibition also increased the permeability of the outer membrane in the absence of exogenous calcium, indicating that bcl-2 inhibition favors MOMP when calcium is low.

Conclusions

The depletion and functional inhibition of bcl-2 contributes to cardiac injury by increasing susceptibility to MPTP opening in high calcium environments and MOMP in the absence of calcium overload. Thus, ischemia-damaged mitochondria with decreased bcl-2 content are susceptible to MPTP opening in early reperfusion and MOMP later in reperfusion when cytosolic calcium has normalized.  相似文献   

15.
The interaction of organic compounds with apoptosis regulatory proteins is an attractive field of research because of its relevance in the development of new chemotherapeutic agents for cancer treatment. Our group designed four new adamantane thiadiazole derivatives (ATDs). The four ATDs were theoretically tested for their binding affinities to a model of an apoptosis inhibitor protein using molecular modeling. ATD-4 which interacted with the highest binding affinity was synthesized and characterized. The in vitro cytotoxicity of ATD-4 against different cancer cell lines as well as normal cell line was determined and compared with 5-fluorouracil as a standard positive control. The lung carcinoma cell line that showed the highest cytotoxic activity due to ATD-4 treatment was chosen to further study if ATD-4 can perform its cytotoxic activity through the induction of apoptosis as expected from molecular modeling. Inducing apoptosis by ATD-4 in lung carcinoma cell line was assessed by various biochemical and morphological characteristics. Biochemically: The effect of ATD-4 on cell cycle and its ability to induce apoptosis were checked through flow cytometry. Caspase-3 activity was detected by a colorimetric method. Real time-polymerase chain reaction (q-PCR) was used to detect p53, caspase-3, bcl-2 and bax gene expression. Morphologically: Changes in cell surface morphology, granulation and average surface roughness were detected using atomic force microscopy (AFM). Cell shrinkage, increase in cytoplasmic organelles, changes in mitochondrial number and morphology, chromatin condensation, membrane blebbing and formation of apoptotic bodies were detected using transmission electron microscopy (TEM). The obtained results suggest that ATD-4 exerted its antitumor activity against A549 cells through the induction of the intrinsic (mitochondrial) apoptotic pathway.  相似文献   

16.
BACKGROUND: Changes in mitochondrial structure and size are observed in response to alterations in cell physiology. Flow cytometry provides a useful tool to study these changes in intact cells. We have used flow cytometry and digital fluorescence microscopy to analyze the variations in mitochondrial size in relation to specific phases of the cell cycle. METHODS: Supravital staining of rat fibroblasts was done with Hoechst 33342 and rhodamine 123, and cells were analyzed in a dual-laser flow cytometer. Synchronized cells at various stages of the cell cycle were analyzed for changes in mitochondrial size. These cells were also examined by electron microscopy, digital fluorescence microscopy and computerized image analysis to compare the lengths of the mitochondria. RESULTS: By using fluorescence pulse width analysis, we observed two populations of mitochondria in intact cells. The percentage of cells with small and large mitochondria at specific stages of the cell cycle indicated that mitochondrial size increases during the cell cycle; early G1 phase cells had the smallest mitochondria and the mitotic phase cells had the largest mitochondria. These results were confirmed by microscopic analysis of cells. CONCLUSIONS: Flow cytometry can distinguish the relative mitochondrial size in intact cells, and in combination with digital microscopy it can be used to study mitochondrial variation during the cell cycle.  相似文献   

17.
Apoptosis or programmed cell death produces cells breaking into several fragments of nuclei, cytoplasm or both nuclei and cytoplasm, known as apoptotic bodies which can be visualized in haematoxylin-eosin staining. Some genes (promoters and suppressors) control this process and certain mutations may induce the expression of abnormal proteins, which can be detected by immunohistochemical staining. Apoptosis can be detected by the TUNEL method either identifying apoptotic bodies or cells at the initial stages of the fragmentation process. We have studied 186 cases of infiltrating ductal breast carcinoma, stages pT1-pT2, and analysed the prognostic significance of tumour recurrence and overall survival of apoptotic index (AI) through univariate and multivariate analysis. We have also studied the immunohistochemical protein expression of apoptosis promoter and suppressors gene (p53, nuclear expression; bcl-2 and Bax, cytoplasm expression; BAG-1, nuclear and cytoplasm expression). The results indicate prognostic significance of p53 and bcl-2 related to patient death and bcl-2 and tumour size to tumour recurrence, bcl-2 acting as a protector factor (apoptotic suppressor) in both situations. On the other hand, we have not found useful prognostic information of AI either to tumour recurrence or overall survival in univariate or multivariate studies. In this study, Bax expression does not provide a new prognostic role in breast carcinoma, although it contrasts to the bcl-2 action and accelerates death.  相似文献   

18.
Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important functions (e.g. in Ca2+ homeostasis, apoptosis, thermogenesis, etc.), thus suggesting their region-specific specializations and intracellular heterogeneity. Although mitochondrial functional heterogeneity has been demonstrated for several cell types, its origin and role under physiological and, in particular, pathophysiological conditions, where the extent of heterogeneity may significantly increase, remain to be elucidated. The present work thus investigated the static and dynamic heterogeneity of mitochondria and mitochondrial function in various cell types in which mitochondria may cope with specific functions including cardiomyocytes, hepatocytes and some cultured carcinoma cells. Modern confocal and two-photon fluorescent microscopy was used for the investigation and direct imaging of region-specific mitochondrial function and heterogeneity. Analysis of the autofluorescence of mitochondrial flavoproteins in hepatocytes and carcinoma cells permitted significant intracellular heterogeneity of mitochondrial redox state to be demonstrated. Comparative homogeneity and clear colocalization of mitochondrial flavoproteins, membrane potential and calcium-sensitive probes were observed in both isolated cardiomyocytes and permeabilized myocardial fibers. After ischemia reperfusion, however, or under conditions of substrate deprivation, significant heterogeneity of all these parameters was detected. Some methodological issues, mechanistic aspects, possible metabolic consequences of mitochondrial functional heterogeneity and its impact under pathological conditions are discussed.  相似文献   

19.
Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x(L) was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x(L) reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F(1)F(O)-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase β subunit in a screen for Bcl-x(L)-binding partners, we tested and found that Bcl-x(L) failed to protect β subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x(L) may contribute importantly to cell survival independently of other Bcl-2 family proteins.  相似文献   

20.
Infection of human monocyte-derived macrophages with Mycobacterium tuberculosis at low multiplicities of infection leads 48-72 h after the infection to cell death with the characteristics of apoptosis or necrosis. Predominant induction of one or the other cell death modality depends on differences in mitochondrial membrane perturbation induced by attenuated and virulent strains. Infection of macrophages with the attenuated H37Ra or the virulent H37Rv causes mitochondrial outer membrane permeabilization characterized by cytochrome c release from the mitochondrial intermembrane space and apoptosis. Mitochondrial outer membrane permeabilization is transient, peaks 6 h after infection, and requires Ca(2+) flux and B cell chronic lymphocytic leukemia/lymphoma 2-associated protein X translocation into mitochondria. In contrast, only the virulent H37Rv induces significant mitochondrial transmembrane potential (Deltapsi(m)) loss caused by mitochondrial permeability transition. Dissipation of Deltapsi(m) also peaks at 6 h after infection, is transient, is inhibited by the classical mitochondrial permeability transition inhibitor cyclosporine A, has a requirement for mitochondrial Ca(2+) loading, and is independent of B cell chronic lymphocytic leukemia/lymphoma translocation into the mitochondria. Transient dissipation of Deltapsi(m) 6 h after infection is essential for the induction of macrophage necrosis by Mtb, a mechanism that allows further dissemination of the pathogen and development of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号