首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The metazoan proteins UAP56, REF1, and NXF1 are thought to bind sequentially to mRNA to promote its export to the cytoplasm: UAP56 is thought to recruit REF1 to nascent mRNA; REF1 acts as an adaptor protein mediating the association of NXF1 with mRNA, whereas NXF1 translocates the mRNA across the nuclear pore complex. REF1 is a component of the exon-exon junction complex (EJC); thus, the EJC is thought to play a role in the export of spliced mRNA. NXF1 and UAP56 are essential for mRNA export. An essential role for metazoan REF1 or the additional EJC proteins in this process has not been established. Contrary to expectation, we show that REF1 and the additional components of the EJC are dispensable for export of bulk mRNA in Drosophila cells. Only when REF1 and RNPS1 are codepleted, or when all EJC proteins are simultaneously depleted is a partial nuclear accumulation of polyadenylated RNAs observed. Because a significant fraction of bulk mRNA is detected in the cytoplasm of cells depleted of all EJC proteins, we conclude that additional adaptor protein(s) mediate the interaction between NXF1 and cellular mRNAs in metazoa. Our results imply that the essential role of UAP56 in mRNA export is not restricted to the recruitment of REF1.  相似文献   

2.
The TREX complex integrates information from nuclear mRNA processing events to ensure the timely export of mRNA to the cytoplasm. In humans, UAP56 and its paralog URH49 form distinct complexes, the TREX complex and the AREX complex, respectively, which cooperatively regulate the expression of a specific set of mRNA species on a genome wide scale. The difference in the complex formation between UAP56 and URH49 are thought to play a critical role in the regulation of target mRNAs. To date, the underlying mechanism remains poorly understood. Here we characterize the formation of the TREX complex and the AREX complex. In the ATP depleted condition, UAP56 formed an Apo-TREX complex containing the THO subcomplex but not ALYREF and CIP29. URH49 formed an Apo-AREX complex containing CIP29 but not ALYREF and the THO subcomplex. However, with the addition of ATP, both the Apo-TREX complex and the Apo-AREX complex were remodeled to highly similar ATP-TREX complex containing the THO subcomplex, ALYREF and CIP29. The knockdown of URH49 caused a reduction in its target mRNAs and a cytokinesis failure. Similarly, cytokinesis abnormality was observed in CIP29 knockdown cells, suggesting that CIP29 belongs to the URH49 regulated mRNA export pathway. Lastly, we confirmed that the export of mRNA in URH49-dependent pathway is achieved by NXF1, which is also observed in UAP56-dependent pathway. Our studies propose an mRNA export model that the mRNA selectivity depends on the Apo-form TREX/AREX complex, which is remodeled to the highly similar ATP-form complex upon ATP loading, and integrated to NXF1.  相似文献   

3.
4.
The conserved family of NXF proteins has been implicated in the export of messenger RNAs from the nucleus. In metazoans, NXFs heterodimerize with p15. The yeast genome encodes a single NXF protein (Mex67p), but there are multiple nxf genes in metazoans. Whether metazoan NXFs are functionally redundant, or their multiplication reflects an adaptation to a greater substrate complexity or to tissue-specific requirements has not been established. The Drosophila genome encodes one p15 homolog and four putative NXF proteins (NXF1 to NXF4). Here we show that depletion of the endogenous pools of NXF1 or p15 from Drosophila cells inhibits growth and results in a rapid and robust accumulation of polyadenylated RNAs within the nucleus. Fluorescence in situ hybridizations show that export of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs is inhibited. Depleting endogenous NXF2 or NXF3 has no apparent phenotype. Moreover, NXF4 is not expressed at detectable levels in cultured Drosophila cells. We conclude that Dm NXF1/p15 heterodimers only (but not NXF2-NXF4) mediate the export of the majority of mRNAs in Drosophila cells and that the other members of the NXF family play more specialized or different roles.  相似文献   

5.
URH49 is a mammalian protein that is 90% identical to the DExH/D box protein UAP56, an RNA helicase that is important for splicing and nuclear export of mRNA. Although Saccharomyces cerevisiae and Drosophila express only a single protein corresponding to UAP56, mRNAs encoding URH49 and UAP56 are both expressed in human and mouse cells. Both proteins interact with the mRNA export factor Aly and both are able to rescue the loss of Sub2p (the yeast homolog of UAP56), indicating that both proteins have similar functions. UAP56 mRNA is more abundant than URH49 mRNA in many tissues, although in testes URH49 mRNA is much more abundant. UAP56 and URH49 mRNAs are present at similar levels in proliferating cultured cells. However, when the cells enter quiescence, the URH49 mRNA level decreases 3–6-fold while the UAP56 mRNA level remains relatively constant. The amount of URH49 mRNA increases to the level found in proliferating cells within 5 h when quiescent cells are growth-stimulated or when protein synthesis is inhibited. URH49 mRNA is relatively unstable (T½ = 4 h) in quiescent cells, but is stabilized immediately following growth stimulation or inhibition of protein synthesis. In contrast, there is much less change in the content or stability of UAP56 mRNA following growth stimulation. Our observations suggest that in mammalian cells, two UAP56-like RNA helicases are involved in splicing and nuclear export of mRNA. Differential expression of these helicases may lead to quantitative or qualitative changes in mRNA expression.  相似文献   

6.
The role of herpes simplex virus ICP27 protein in mRNA export is investigated by microinjection into Xenopus laevis oocytes. ICP27 dramatically stimulates the export of intronless viral mRNAs, but has no effect on the export of cellular mRNAs, U snRNAs or tRNA. Use of inhibitors shows, in contrast to previous suggestions, that ICP27 neither shuttles nor exports viral mRNA via the CRM1 pathway. Instead, ICP27-mediated viral RNA export requires REF and TAP/NXF1, factors involved in cellular mRNA export. ICP27 binds directly to REF and complexes containing ICP27, REF and TAP are found in vitro and in virally infected cells. A mutant ICP27 that does not interact with REF is inactive in viral mRNA export. We propose that ICP27 associates with viral mRNAs and recruits TAP/NXF1 via its interaction with REF proteins, allowing the otherwise inefficiently exported viral mRNAs to access the TAP-mediated export pathway. This represents a novel mechanism for export of viral mRNAs.  相似文献   

7.
Expression of a gfp transgene in the intestines of living Caenorhabditis elegans has been measured following depletion by RNAi of a variety of known splicing factors and mRNA export proteins. Reduction of most splicing factors showed only a small effect on expression of the transgene in the animal injected with dsRNA, although most of these RNAi's resulted in embryonic lethality in their offspring. In contrast, RNAi of nxf-1, the worm homolog of mammalian NXF1/TAP, a key component of the mRNA export machinery, resulted in dramatic suppression of GFP expression in the injected animals. When we tested other proteins previously reported to be involved in marking mRNAs for export, we obtained widely divergent results. Whereas RNAi of the worm REF/Aly homologs had no obvious effect, either in the injected animals or their offspring, RNAi of UAP56, reported to be the partner of REF/Aly, resulted in strong suppression of GFP expression due to nuclear retention of its mRNA. Overexpression of UAP56 also resulted in rapid loss of GFP expression and lethality at all stages of development. We conclude that UAP56 plays a key role in mRNA export in C. elegans, but that REF/Aly may not. It also appears that some RNA processing factors are required for viability (e.g., U2AF, PUF60, SRp54, SAP49, PRP8, U1-70K), whereas others are not (e.g., U2A', CstF50).  相似文献   

8.
9.
10.
mRNA export is mediated by Mex67p:Mtr2p/NXF1:p15, a conserved heterodimeric export receptor that is thought to bind mRNAs through the RNA binding adaptor protein Yra1p/REF. Recently, mammalian SR (serine/arginine-rich) proteins were shown to act as alternative adaptors for NXF1-dependent mRNA export. Npl3p is an SR-like protein required for mRNA export in S. cerevisiae. Like mammalian SR proteins, Npl3p is serine-phosphorylated by a cytoplasmic kinase. Here we report that this phosphorylation of Npl3p is required for efficient mRNA export. We further show that the mRNA-associated fraction of Npl3p is unphosphorylated, implying a subsequent nuclear dephosphorylation event. We present evidence that the essential, nuclear phosphatase Glc7p promotes dephosphorylation of Npl3p in vivo and that nuclear dephosphorylation of Npl3p is required for mRNA export. Specifically, recruitment of Mex67p to mRNA is Glc7p dependent. We propose a model whereby a cycle of cytoplasmic phosphorylation and nuclear dephosphorylation of shuttling SR adaptor proteins regulates Mex67p:Mtr2p/NXF1:p15-dependent mRNA export.  相似文献   

11.
Vertebrate TAP (also called NXF1) and its yeast orthologue, Mex67p, have been implicated in the export of mRNAs from the nucleus. The TAP protein includes a noncanonical RNP-type RNA binding domain, four leucine-rich repeats, an NTF2-like domain that allows heterodimerization with p15 (also called NXT1), and a ubiquitin-associated domain that mediates the interaction with nucleoporins. Here we show that TAP belongs to an evolutionarily conserved family of proteins that has more than one member in higher eukaryotes. Not only the overall domain organization but also residues important for p15 and nucleoporin interaction are conserved in most family members. We characterize two of four human TAP homologues and show that one of them, NXF2, binds RNA, localizes to the nuclear envelope, and exhibits RNA export activity. NXF3, which does not bind RNA or localize to the nuclear rim, has no RNA export activity. Database searches revealed that although only one p15 (nxt) gene is present in the Drosophila melanogaster and Caenorhabditis elegans genomes, there is at least one additional p15 homologue (p15-2 [also called NXT2]) encoded by the human genome. Both human p15 homologues bind TAP, NXF2, and NXF3. Together, our results indicate that the TAP-p15 mRNA export pathway has diversified in higher eukaryotes compared to yeast, perhaps reflecting a greater substrate complexity.  相似文献   

12.
13.
Human TAP and its yeast orthologue Mex67p are members of the multigene family of NXF proteins. A conserved feature of NXFs is a leucine-rich repeat domain (LRR) followed by a region related to the nuclear transport factor 2 (the NTF2-like domain). The NTF2-like domain of metazoan NXFs heterodimerizes with a protein known as p15 or NXT. A C-terminal region related to ubiquitin-associated domains (the UBA-like domain) is present in most, but not all NXF proteins. Saccharomyces cerevisiae Mex67p and Caenorhabditis elegans NXF1 are essential for the export of messenger RNA from the nucleus. Human TAP mediates the export of simian type D retroviral RNAs bearing the constitutive transport element, but the precise role of TAP and p15 in mRNA nuclear export has not yet been established. Here we show that overexpression of TAP/p15 heterodimers bypasses nuclear retention and stimulates the export of mRNAs that are otherwise exported inefficiently. This stimulation of mRNA export is strongly reduced by removing the UBA-like domain of TAP and abolished by deleting the LRR domain or the NTF2-like domain. Similar results are obtained when TAP/p15 heterodimers are directly tethered to the RNA export cargo. Our data indicate that formation of TAP/p15 heterodimers is required for TAP-mediated export of mRNA and show that the LRR domain of TAP plays an essential role in this process.  相似文献   

14.
15.
Export of mRNA from the nucleus to the cytoplasm is a critical process for all eukaryotic gene expression. As mRNA is synthesized, it is packaged with a myriad of RNA‐binding proteins to form ribonucleoprotein particles (mRNPs). For each step in the processes of maturation and export, mRNPs must have the correct complement of proteins. Much of the mRNA export pathway revolves around the heterodimeric export receptor yeast Mex67?Mtr2/human NXF1?NXT1, which is recruited to signal the completion of nuclear mRNP assembly, mediates mRNP targeting/translocation through the nuclear pore complex (NPC), and is displaced at the cytoplasmic side of the NPC to release the mRNP into the cytoplasm. Directionality of the transport is governed by at least two DEAD‐box ATPases, yeast Sub2/human UAP56 in the nucleus and yeast Dbp5/human DDX19 at the cytoplasmic side of the NPC, which respectively mediate the association and dissociation of Mex67?Mtr2/NXF1?NXT1 onto the mRNP. Here we review recent progress from structural studies of key constituents in different steps of nuclear mRNA export. These findings have laid the foundation for further studies to obtain a comprehensive mechanistic view of the mRNA export pathway.  相似文献   

16.
Viruses have been invaluable tools for discovering key pathways of nucleocytoplasmic transport. Conversely, disruption of specific nuclear transport pathways, are crucial for the productive life cycle of some viruses. The major cellular mRNA export pathway, which uses TAP (NXF1)/p15(NXT) as receptor, was discovered as a result of TAP interaction with CTE-containing RNAs from Mason-Pfizer Monkey Virus. In addition, CRM1 or exportin 1, which is a transport receptor that mediates nuclear export of proteins, snRNAs, rRNAs and a small subset of mRNAs, was discovered as an interacting partner of the Rev protein of HIV1. Viruses may disrupt the nuclear transport machinery to prevent host antiviral response. VSV Matrix (M) protein inhibits mRNA export by forming a complex with the mRNA export factor Rae1 whereas poliovirus inhibits nuclear import of proteins by probably degrading Nup62 and Nup153. Hence, this review focuses on viruses as tools and as disruptors of nucleocytoplasmic trafficking.  相似文献   

17.
Cellular DExD/H-box RNA-helicases perform essential functions during mRNA biogenesis. The closely related human proteins UAP56 and URH49 are members of this protein family and play an essential role for cellular mRNA export by recruiting the adaptor protein REF to spliced and unspliced mRNAs. In order to gain insight into their mode of action, we aimed to characterize these RNA-helicases in more detail. Here, we demonstrate that UAP56 and URH49 exhibit an intrinsic CRM1-independent nucleocytoplasmic shuttling activity. Extensive mapping studies identified distinct regions within UAP56 or URH49 required for (i) intranuclear localization (UAP56 aa81-381) and (ii) interaction with REF (UAP56 aa51-428). Moreover, the region conferring nucleocytoplasmic shuttling activity was mapped to the C-terminus of UAP56, comprising the amino acids 195-428. Interestingly, this region coincides with a domain within Uap56p of S. pombe that has been reported to be required for both Rae1p-interaction and nucleocytoplasmic shuttling. However, in contrast to this finding we report that human UAP56 shuttles independently from Rae1. In summary, our results reveal nucleocytoplasmic shuttling as a conserved feature of yeast and human UAP56, while their export receptor seems to have diverged during evolution.  相似文献   

18.
Tap, a member of the evolutionarily conserved nuclear RNA export factor (NXF) family of proteins, has been implicated in the nuclear export of bulk poly(A)+ RNAs. cDNAs encoding the mouse NXF proteins (Tap, NXF7, NXF2, and NXF3) were prepared and the gene products were characterized in terms of their genomic organization, expression patterns, and biochemical properties. Mouse Tap was found to be ubiquitously expressed, whereas tissue- and developmental stage specific expression of mouse Nxf2, Nxf3, and Nxf7 was observed. Although mouse Tap and NXF2 bound to the phenylalanine-glycine repeat sequences of nucleoporins, NXF7 and NXF3 did not. GFP-tagged mouse Tap and NXF2 were localized predominantly in the nucleus. In contrast, GFP-tagged NXF7 and NXF3 were localized exclusively in the cytoplasm. As shown for the human counterpart, disruption of the leucine-rich nuclear export signal or leptomycin B treatment abolishes the cytoplasmic localization of mouse NXF3. p15/NXT1, an essential cofactor for human Tap in the export of mRNAs, was able to bind to mouse Tap, NXF2, and NXF3, but NXF7 did not form a stable heterodimeric complex. Transient transfection experiments indicated that only mouse Tap and NXF2 enhance the nuclear export of an otherwise inefficiently exported mRNA substrate. The orthologous relationship between human and mouse Nxf genes is discussed on the basis of these data.  相似文献   

19.
Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号