首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hygromycin B resistance was conferred to the mycelium of the white root rot fungus Rosellinia necatrix by transformation with the hygromycin B phosphotransferase gene (hph) of Escherichia coli under the control of the heterologous fungal Aspergillus nidulans P-gpd (glyceraldehyde 3-phosphate dehydrogenase) promoter and the trpC terminator. In all three transformants, the presence of hph and single-copy integrations of the marker gene were demonstrated by Southern analysis. This is the first report describing A. tumefaciens-mediated transformation of R. necatrix  相似文献   

2.
《Gene》1998,208(2):177-182
The Eco29kI restriction-modification system (RMS2) has been found to be localized on the plasmid pECO29 occurring naturally in the Escherichia coli strain 29k (Pertzev, A.V., Ruban, N.M., Zakharova, M.V., Beletskaya, I.V., Petrov, S.I., Kravetz, A.N., Solonin, A.S., 1992. Eco29kI, a novel plasmid encoded restriction endonuclease from Escherichia coli. Nucleic Acids Res. 20, 1991). The genes coding for this RMS2, a SacII isoschizomer recognizing the sequence CCGCGG have been cloned in Escherichia coli K802 and sequenced. The DNA sequence predicts the restriction endonuclease (ENase) of 214 amino acids (aa) (24 556 Da) and the DNA-methyltransferase (MTase) of 382 aa (43 007 Da) where the genes are separated by 2 bp and arranged in tandem with eco29kIR preceding eco29kIM. The recombinant plasmid with eco29kIR produces a protein of expected size. ṀEco29kI contains all the conserved aa sequence motifs characteristic of m5C-MTases. Remarkably, its variable region exhibits a significant similarity to the part of the specific target-recognition domain (TRD) from ṀBssHII—multispecific m5C-MTase (Schumann, J.J., Walter, J., Willert, J., Wild, C., Koch D., Trautner, T.A., 1996. ṀBssHII: a multispecific cytosine-C5-DNA-methyltransferase with unusual target recognizing properties. J. Mol. Biol. 257, 949–959), which recognizes five different sites on DNA (HaeII, MluI, Cfr10I, SacII and BssHII), and the comparison of the nt sequences of its variable regions allowed us to determine the putative TRD of ṀEco29kI.  相似文献   

3.
4.
Escherichia coli is generally considered as a commensal inhabitant of gastrointestinal tract of humans and animals. The aim of this study was to gain insight on the distribution of phylotypes and presence of genes encoding integrons, extended β-lactamases and resistance to other antimicrobials in the commensal E. coli isolates from healthy adults in Chandigarh, India. PCR and DNA sequencing were used for phylogenetic classification, detections of integrase genes, gene cassettes within the integron and extended β-lactamases. The genetic structure of E. coli revealed a non-uniform distribution of isolates among the seven phylogenetic groups with significant representation of group A. Integron-encoded integrases were detected in 25 isolates with class 1 integron-encoded intI1 integrase being in the majority (22 isolates). The gene cassettes identified were those for trimethoprim, streptomycin, spectinomycin and streptothricin. The dfrA12-orfF-aadA2 was the most commonly found gene cassette in intI1 positive isolates. Phenotypic assay for screening the potential ESBL producers suggested 16 isolates to be ESBL producers. PCR detection using gene-specific primers showed that 15 out of these 16 ESBL-producing E. coli harboured the bla CTX-M-15 gene. Furthermore, molecular studies helped in characterizing the genes responsible for tetracycline, chloramphenicol and sulphonamides resistance. Collectively, our study outlines the intra-species phylogenetic structure and highlights the prevalence of class 1 integron and bla CTX-M-15 in commensal E. coli isolates of healthy adults in Chandigarh, India. Our findings further reinforce the relevance of commensal E. coli strains on the growing burden of antimicrobial resistance.  相似文献   

5.
Allelic replacement in staphylococci is frequently aided by antibiotic resistance markers that replace the gene(s) of interest. In multiply modified strains, the number of mutated genes usually correlates with the number of selection markers in the strain's chromosome. Site-specific recombination systems are capable of eliminating such markers, if they are flanked by recombinase recognition sites. In this study, a Cre-lox setting was established that allowed the efficient removal of resistance genes from the genomes of Staphylococcus carnosus and S. aureus. Two cassettes conferring resistance to erythromycin or kanamycin were flanked with wild-type or mutant lox sites, respectively, and used to delete single genes and an entire operon. After transformation of the cells with a newly constructed cre expression plasmid (pRAB1), genomic eviction of the resistance genes was observed in approximately one out of ten candidates analyzed and subsequently verified by PCR. Due to its thermosensitive origin of replication, the plasmid was then easily eliminated at nonpermissive temperatures. We anticipate that the system presented here will prove useful for generating markerless deletion mutants in staphylococci.  相似文献   

6.
This study was aimed at determining whether gene cassettes (promoter-coding sequence-terminator) can be efficiently used in microprojectile acceleration-mediated co-transformation of rice in the place of whole plasmids, and to what extent their use influences the integration and expression of the co-transferred gene of interest. Two non-linked marker genes (yfp and hph) were co-introduced by microprojectile bombardment into cells of embryogenic calli in three separate experiments. Three different DNA structures were compared for their ability to transiently and stably transform rice cells: supercoiled or linearized whole-plasmid DNA, gene cassette DNA and single-stranded gene cassette DNA coated with Escherichia coli single-stranded binding (SSB) proteins. Our results demonstrate that microprojectile bombardment-mediated transformation of rice using gene cassettes is possible without significantly reducing transformation efficiency in comparison to the use of whole-plasmid DNA. Furthermore, no obvious difference in transgene integration pattern and inheritance was observed among plants transformed with gene cassettes compared to those transformed with the whole plasmid, except that concatemerization of molecules prior to integration was rarely observed in gene cassette transformants. Received: 4 April 2001 / Accepted: 13 August 2001  相似文献   

7.
Aims: To characterize the molecular diversity of class 1 integrons and antibiotic resistance (AR) genes of Enterobacteriaceae strains recovered from aquatic habitats in Jinan, Shandong Province, China. Methods and Results: Six hundred and thirty‐eight antimicrobial‐resistant Enterobacteriaceae isolated from wastewater were examined for class 1 integron. Of these, 293 were positive for the class 1 integrase gene intI1; among these, 34 gene cassettes and 29 AR genes were detected. Twenty‐nine distinct gene cassette arrays were identified by restriction fragment length polymorphism (RFLP). Seven strains harboring novel gene cassette arrays were subjected to further study, in which antimicrobial susceptibility profiles were determined, and the presence of other AR genes outside of the integrons was assayed. Several of the resistance determinants were found to be transferable by conjugation or transformation. Conclusions: This study established the assessment of class 1 integron and antimicrobial resistance gene patterns among environmental Enterobacteriaceae. Also, a restriction enzyme EcoRII was employed to develop a rapid and simple method for characterizing gene cassette arrays by RFLP analysis, which facilitated further study of novel gene cassette arrays. Significance and Impact of Study: These data not only illustrated the diversity of class 1 integron gene cassettes but also provided direct evidence that integrons mobilized gene cassettes, generating new linkages of resistance genes, and they could be integrated in gene transfer units such as conjugative plasmids to contribute to the dissemination of AR genes by horizontal gene transfer (HGT) in aquatic environments.  相似文献   

8.
Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.  相似文献   

9.
Miniplasmids (pKN402 and pKN410) were isolated from runaway-replication mutants of plasmid R1. At 30°C these miniplasmids are present in 20–50 copies per cell of Escherichia coli, whereas at temperatures above 35°C the plasmids replicate without copy number control during 2–3 h. At the end of this period plasmid DNA amounts to about 75% of the total DNA. During the gene amplification, growth and protein synthesis continue at normal rate leading to a drastic amplification of plasmid gene products. Plasmids pKN402 (4.6 Md) and pKN410 (10 Md) have single restriction sites for restriction endonucleases EcoRI and HindIII; in addition plasmid pKN410 has a single BamHI site and carries ampicillin resistance. The plasmids can therefore be used as cloning vectors. Several genes were cloned into these vectors using the EcoRI sites; chromosomal as well as plasmid-coded β-lactamase was found to be amplified up to 400-fold after thermal induction of the runaway replication. Vectors of this temperature-dependent class will be useful in the production of large quantities of genes and gene products. These plasmids have lost their mobilization capacity. Runaway replication is lethal to the host bacteria in rich media. These two properties contribute to the safe use of the plasmids as cloning vehicles.  相似文献   

10.

Background

Class 1 integrons contain genetic elements for site-specific recombination, capture and mobilization of resistance genes. Studies investigating the prevalence, distribution and types of integron located resistance genes are important for surveillance of antimicrobial resistance and to understand resistance development at the molecular level.

Methods

We determined the prevalence and genetic content of class 1 integrons in Enterobacteriaceae (strain collection 1, n = 192) and E. coli (strain collection 2, n = 53) from bloodstream infections in patients from six Norwegian hospitals by molecular techniques. Class 1 integrons were also characterized in 54 randomly selected multiresistant E. coli isolates from gastrointestinal human infections (strain collection 3).

Results

Class 1 integrons were present in 10.9% of the Enterobacteriaceae blood culture isolates of collection 1, all but one (S. Typhi) being E. coli. Data indicated variations in class 1 integron prevalence between hospitals. Class 1 integrons were present in 37% and 34% of the resistant blood culture isolates (collection 1 and 2, respectively) and in 42% of the resistant gastrointestinal E. coli. We detected a total of 10 distinct integron cassette PCR amplicons that varied in size between 0.15 kb and 2.2 kb and contained between zero and three resistance genes. Cassettes encoding resistance to trimethoprim and aminoglycosides were most common. We identified and characterized a novel plasmid-located integron with a cassette-bound novel gene (linF) located downstream of an aadA2 gene cassette. The linF gene encoded a putative 273 aa lincosamide nucleotidyltransferase resistance protein and conferred resistance to lincomycin and clindamycin. The deduced LinF amino acid sequence displayed approximately 35% identity to the Enterococcus faecium and Enterococcus faecalis nucleotidyl transferases encoded by linB and linB'

Conclusions

The present study demonstrated an overall low and stable prevalence of class 1 integron gene cassettes in clinical Enterobacteriaceae and E. coli isolates in Norway. Characterization of the novel lincosamide resistance gene extends the growing list of class 1 integron gene cassettes that confer resistance to an increasing number of antibiotics.  相似文献   

11.
Biosafety implications of selectable marker genes that are integrated into the transgenic plants are discussed. In the laboratory, selectable marker genes are used at two stages to distinguish transformed cells out of a large population of nontransformed cells: 1) initial assembly of gene cassettes is generally done in E. coli on easily manipulatable plasmid vectors that contain the selectable marker genes which often code for antibiotic inactivating enzymes, and 2) Then the gene cassettes are inserted into the plant genome by various transformation methods. For selection of transformed plant cells, antibiotic and herbicide resistance genes are widely used. Consequently, transgenic plants can end up with DNA sequences of selectable markers that are functional in E. coli and plants. The potential for horizontal gene transfer of selectable markers from transgenic plants to other organisms both in the environment and in the intestine of humans and animals is evaluated. Mechanisms and consequences of the transfer of marker genes from plants to other organisms is examined. Strategies to avoid marker genes in plants are discussed. It is possible to avoid the use of controversial selectable markers in the construction of transgenic plants.  相似文献   

12.
13.
14.
The versatility of insertional inactivation of β-galactosidase activity for subcloning and sequencing has been enhanced by combining a chemically synthesized oligonucleotide which specifies nine 6-bp-cutter restriction sites including BglII, XhoI, NruI, ClaI, SacI and EcoRV in various configurations with existing polylinkers to create a set of highly versatile cloning sites. These improved polylinkers have been inserted into plasmids (the pICs) for routine cloning of double-stranded DNA, and into chimeric phage/plasmids (the pICEMs) for biological production of single stranded DNA. The most versatile Polylinker specifies 17 restriction sites in the β-galactosidase α-complementing gene fragment. One of the new polylinkers was inserted into M 13 DNA to produce a vector (M13mIC7) with nine cloning sites.  相似文献   

15.
The degree of genetic diversity within and between 21 Arabidopsis thaliana (L.) Heynh ecotypes was estimated by AFLP analysis. Within seven of the 21 ecotypes, a low but significant level of polymorphism was detected, and for five of these ecotypes two or three distinct subgroups could be distinguished. As these ecotypes represent natural populations, this intra-ecotypic diversity reflects natural genetic variation and diversification within the ecotypes. The source of this diversity remains unclear but is intriguing in view of the predominantly self-fertilizing nature of Arabidopsis. Interrelationships between the different ecotypes were estimated after AFLP fingerprinting using two enzyme combinations (EcoRI/MseI and SacI/MseI) and a number of selective primer pairs. SacI recognition sites are less evenly distributed in the genome than EcoRI sites, and occur more frequently in coding sequences. In most cases, AFLP data from only one enzyme combination are used for genetic diversity analysis. Our results show that the use of two enzyme combinations can result in significantly different classifications of the ecotypes both in cluster and ordination analysis. This difference most probably reflects differences in the genomic distribution of the AFLP fragments generated, depending on the enzymes and selective primers used. For closely related varieties, as in the case of Arabidopsis ecotypes, this can preclude reliable classification.  相似文献   

16.
The gene coding for xylulokinase has been isolated from the yeast Pachysolen tannophilus by complementation of Escherichia coli xylulokinase (xylB) mutants. Through subcloning, the gene has been localized at one end of a 3.2-kilobase EcoRI-PstI fragment. Expression of the cloned gene was insensitive to glucose inhibition. Furthermore, the cloned gene did not cross-hybridize with E. coli and Saccharomyces cerevisiae xylulokinase genes.  相似文献   

17.
The sites recognized by the Escherichia coli K12 restriction endonuclease were localized to defined regions on the genomes of phage φXsK1, φXsK2, and G4 by the marker rescue technique. Methyl groups placed on the genome of plasmid pBR322 by the E. coli K12 modification methylase were mapped in HinfI fragments 1 and 3, and HaeIII fragments 1 and 3. A homology of seven nucleotides in the configuration: 5′-A-A-C .. 6N .. G-T-G-C-3′, where 6N represents six unspecified nucleotides, was found among the DNA sequences containing the five EcoK sites of φXsK1, φXsK2, G4, and pBR322. Three lines of evidence indicate that this sequence constitutes the recognition site of the E. coli K12 restriction enzyme. The C in 5′-A-A-C and the T in 5′-G-T-G-C are locations of mutations leading to loss or gain of the site and thus are positions recognized by the enzyme. This sequence does not occur on φXam3cs70, simian virus 40 (SV40), and fd DNAs which do not possess EcoK sites, and occurs only once on φXsK1, φXsK2, and G4 DNAs, and twice on pBR322 DNA. In order to prove that all seven conserved nucleotides are essential for the recognition by the E. coli K12 restriction enzyme, the nucleotide sequences of φX174, G4, SV40, fd, and pBR322 were searched for sequences differing from the sequence 5′-A-A-C .. 6N .. G-TG-C-3′ at only one of the specified positions. It was found that sequences differing at each of the specified positions occur on DNA sequences that do not contain the EcoK sites. Thus, the recognition site of the E. coli K12 restriction enzyme has the same basic structure as that of the EcoB site (Lautenberger et al., 1978). In each case there are two domains, one containing three and the other four specific nucleotides, separated by a sequence of unspecified bases. However, the unspecified sequence in the EcoK site must be precisely six bases instead of the eight found in the EcoB site. Alignment of the EcoK and EcoB sites suggests that four of the seven specified nucleotides are conserved between the sequences recognized by these two allelic restriction and modification systems.  相似文献   

18.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

19.
20.
A comparison of EcoRI digestion profiles of plasmid RP1 isolated from Caulobacter vibrioides WS48 and Escherichia coli CSH29 demonstrated that EcoRI sites were modified by WS48.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号