首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Acanthamoeba myosins IA and IB were localized by immunofluorescence and immunoelectron microscopy in vegetative and phagocytosing cells and the total cell contents of myosins IA, IB, and IC were quantified by immunoprecipitation. The quantitative distributions of the three myosin I isoforms were then calculated from these data and the previously determined localization of myosin IC. Myosin IA occurs almost exclusively in the cytoplasm, where it accounts for approximately 50% of the total myosin I, in the cortex beneath phagocytic cups and in association with small cytoplasmic vesicles. Myosin IB is the predominant isoform associated with the plasma membrane, large vacuole membranes and phagocytic membranes and accounts for almost half of the total myosin I in the cytoplasm. Myosin IC accounts for a significant fraction of the total myosin I associated with the plasma membrane and large vacuole membranes and is the only myosin I isoform associated with the contractile vacuole membrane. These data suggest that myosin IA may function in cytoplasmic vesicle transport and myosin I-mediated cortical contraction, myosin IB in pseudopod extension and phagocytosis, and myosin IC in contractile vacuole function. In addition, endogenous and exogenously added myosins IA and IB appeared to be associated with the cytoplasmic surface of different subpopulations of purified plasma membranes implying that the different myosin I isoforms are targeted to specific membrane domains through a mechanism that involves more than the affinity of the myosins for anionic phospholipids.  相似文献   

2.
The actin-activated Mg2+-ATPase activities of Acanthamoeba myosins IA, IB, and IC are expressed only when a single site in their heavy chains is phosphorylated by a myosin I heavy chain-specific kinase. We show that phosphorylation occurs at Ser-315 in the myosin IB heavy chain, Ser-311 in myosin IC, and a threonine residue at a corresponding position in myosin IA whose amino acid sequence is as yet unknown. The most obvious feature common to the three substrates is a basic amino acid(s) 2 or 3 residues before the site of phosphorylation. The phosphorylation site is located between the ATP- and actin-binding sites, which corresponds to the middle of the 50-kDa domain of skeletal muscle myosin subfragment 1. The sequence similarity between the region surrounding the phosphorylation site of myosin I and subfragment 1 is much lower than the average sequence similarity between myosin I and subfragment 1. This is consistent with the hypothesis that the conformation of this region of myosin I differs from that of the corresponding region in skeletal muscle myosin and that phosphorylation converts the conformation of the actomyosin I complex into a conformation comparable to that present in actosubfragment 1 without phosphorylation. The protein sequences obtained in the course of this work led to the conclusion that the myosin I genes previously identified as myosin IB and IL (myosin-like) heavy chains actually are the myosin IC and IB heavy chains, respectively. Finally, we report a modification of the method for monitoring the appearance of 32Pi during sequencing of 32P-labeled peptides that results in almost complete recovery of the radioactivity, thus allowing unequivocal assignment of the position of the phosphorylated residue.  相似文献   

3.
A third isoform of myosin I has been isolated from Acanthamoeba and designated myosin IC. Peptide maps and immunoassays indicate that myosin IC is not a modified form of myosin IA, IB, or II. However, myosin IC has most of the distinctive properties of a myosin I. It is a globular protein of native Mr approximately 162,000, apparently composed of a single 130-kDa heavy chain and a pair of 14-kDa light chains. It is soluble in MgATP at low ionic strength, conditions favoring filament assembly by myosin II. Myosin IC has high Ca2+- and (K+,EDTA)-ATPase activities. Its low Mg2+-ATPase activity is stimulated to a maximum rate of 20 s-1 by the addition of F-actin if its heavy chain has been phosphorylated by myosin I heavy chain kinase. The dependence of the Mg2+-ATPase activity of myosin IC on F-actin concentration is triphasic; and, at fixed concentrations of F-action, this activity increases cooperatively as the concentration of myosin IC is increased. These unusual kinetics were first demonstrated for myosins IA and IB and shown to be due to the presence of two actin-binding sites on each heavy chain which enable those myosins I to cross-link actin filaments. Myosin IC is also capable of cross-linking F-actin, which, together with the kinetics of its actin-activated Mg2+-ATPase activity, suggests that it, like myosins IA and IB, possesses two independent actin-binding domains.  相似文献   

4.
Phosphorylation of a single threonine (myosin IA) or serine (myosins IB and IC) in the heavy chains of the Acanthamoeba myosin I isozymes is required for expression of their actin-activated Mg2(+)-ATPase activities. We now report that the synthetic peptide Gly-Arg-Gly-Arg-Ser-Ser-Val-Tyr-Ser, which corresponds to the phosphorylated region of Acanthamoeba myosin IC, is a good substrate for myosin I heavy chain kinase: Km = 54 microM, and Vmax = 15 mumols/min.mg. The same serine is phosphorylated as in the native substrate (residue 6 in the above sequence), and kinase activity with the synthetic peptide as substrate is also stimulated by phosphatidylserine-enhanced autophosphorylation of the kinase. These results indicate that all of the essential sequence determinants of kinase specificity are contained within this 9-residue peptide. With the peptide as substrate, we found that another acidic phospholipid, phosphatidylinositol, also enhances autophosphorylation of the kinase whereas the neutral phospholipids phosphatidylcholine and phosphatidylethanolamine do not. By comparing the Km and Vmax values for a series of synthetic peptide substrates, we established that 1 basic amino acid is essential on the NH2-terminal side of the phosphorylation site, and two are preferable, and that a tyrosine is essential 2 residues away on the COOH-terminal side. There is a slight preference for arginines over lysines. All of these local sequence specificity determinants are present in the three native substrates, Acanthamoeba myosins IA, IB, and IC, and in two Dictyostelium myosin I isozymes that are putative substrates for the kinase. Similar sequences do not occur in the myosins I from intestinal brush border, which is not a substrate for the Acanthamoeba kinase.  相似文献   

5.
The actin-activated Mg(2+)-ATPase activities of Acanthamoeba myosins I are known to be maximally expressed only when a single threonine (myosin IA) or serine (myosins IB and IC) is phosphorylated by myosin I heavy chain kinase. The purified kinase is highly activated by autophosphorylation and the rate of autophosphorylation is greatly enhanced by the presence of acidic phospholipids. In this paper, we show by immunofluorescence and immunoelectron microscopy of permeabilized cells that myosin I heavy chain kinase is highly concentrated, but not exclusively, at the plasma membrane. Judged by their electrophoretic mobilities, kinase associated with purified plasma membranes may differ from the cytoplasmic kinase, possibly in the extent of its phosphorylation. Purified kinase binds to highly purified plasma membranes with an apparent KD of approximately 17 nM and a capacity of approximately 0.8 nmol/mg of plasma membrane protein, values that are similar to the affinity and capacity of plasma membranes for myosins I. Binding of kinase to membranes is inhibited by elevated ionic strength and by extensive autophosphorylation but not by substrate-level concentrations of ATP. Membrane-bound kinase autophosphorylates to a lesser extent than free kinase and does not dissociate from the membranes after autophosphorylation. The co-localization of myosin I heavy chain kinase and myosin I at the plasma membrane is of interest in relation to the possible functions of myosin I especially as phospholipids increase kinase activity.  相似文献   

6.
The low-shear viscosity of 5-30 microM F-actin was greatly increased by the addition of 0.1-0.5 microM unphosphorylated Acanthamoeba myosins IA and IB. The increase in viscosity was about the same in 2 mM ADP as in the absence of free nucleotide but was much less in 2 mM ATP. The single-headed monomolecular Acanthamoeba myosins were as effective as an equal molar concentration of two-headed muscle heavy meromyosin and much more effective than single-headed muscle myosin subfragment-1. These results suggest that Acanthamoeba myosins IA and IB can cross-link actin filaments as proposed in the accompanying paper (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179) to explain the actin-dependent cooperative increase in actin-activated Mg2+-ATPase activity as a function of the concentration of myosin I. Superprecipitation occurred when phosphorylated myosin IA or IB was mixed with F-actin. In addition to myosin I heavy chain phosphorylation, superprecipitation required Mg2+ and ATP. ATP hydrolysis was linear during the time course of the superprecipitation, and inhibitors of ATP hydrolysis inhibited superprecipitation. A small, dense contracted gel was formed when the reaction was carried out in a cuvette, and a birefringent actomyosin thread resulted from superprecipitation in a microcapillary. The rate and extent of superprecipitation depended on the actin and myosin I concentrations with maximum superprecipitation occurring at an actin:myosin ratio of 7:1. These results provide strong evidence for the ability of Acanthamoeba myosins IA and IB to perform contractile and motile functions.  相似文献   

7.
A low-molecular-weight myosin has been purified 1500-fold from extracts of Dictyostelium discoideum, based on the increase in K+,EDTA-ATPase specific activity. The purified enzyme resembles the single-headed, low-molecular-weight myosins IA and IB from Acanthamoeba castellanii, and differs from the conventional two-headed, high-molecular-weight myosin previously isolated from Dictyostelium, in several ways. It has higher K+,EDTA-ATPase activity than Ca2+-ATPase activity; it has a native molecular mass of about 150,000 and a single heavy chain of about 117,000; the 117,000-dalton heavy chain is phosphorylated by Acanthamoeba myosin I heavy chain kinase; phosphorylation of its heavy chain enhances its actin-activated Mg2+-ATPase activity; and the 117,000-dalton heavy chain reacts with antibodies raised against the heavy chain of Acanthamoeba myosin IA. None of these properties is shared by the low-molecular-weight active fragment that can be produced by chymotryptic digestion of conventional Dictyostelium myosin. We conclude that Dictyostelium contains an enzyme of the myosin I type previously isolated only from Acanthamoeba.  相似文献   

8.
In previous work from this laboratory, a partially purified protein kinase from the soil amoeba Acanthamoeba castellanii was shown to phosphorylate the heavy chain of the two single-headed Acanthamoeba myosin isoenzymes, myosin IA and IB, resulting in a 10- to 20-fold increase in their actin-activated Mg2+-ATPase activities (Maruta, H., and Korn, E.D. (1977) J. Biol. Chem. 252, 8329-8332). A myosin I heavy chain kinase has now been purified to near homogeneity from Acanthamoeba by chromatography on DE-52 cellulose, phosphocellulose, and Procion red dye, followed by chromatography on histone-Sepharose. Myosin I heavy chain kinase contains a single polypeptide of 107,000 Da by electrophoretic analysis. Molecular sieve chromatography yields a Stokes radius of 4.1 nm, consistent with a molecular weight of 107,000 for a native protein with a frictional ratio of approximately 1.3:1. The kinase catalyzes the incorporation of 0.9 to 1.0 mol of phosphate into the heavy chain of both myosins IA and IB. Phosphoserine has been shown to be the phosphorylated amino acid in myosin IB. The kinase has highest specific activity toward myosin IA and IB, about 3-4 mumol of phosphate incorporated/min/mg (30 degrees C) at concentrations of myosin I that are well below saturating levels. The kinase also phosphorylates histone 2A, isolated smooth muscle light chains, and, to a very small extent, casein, but has no activity toward phosvitin or myosin II, a third Acanthamoeba myosin isoenzyme with a very different structure from myosin IA and IB. Myosin I heavy chain kinase requires Mg2+ but is not dependent on Ca2+, Ca2+/calmodulin, or cAMP for activity. The kinase undergoes an apparent autophosphorylation.  相似文献   

9.
Extracts of Acanthamoeba castellanii contain four myosin-like ATPases (Maruta, H., Gadasi, H., Collins, J.H., and Korn, E.D. (1979) J. Biol. Chem. 254, 3624-3630): double-headed Acanthamoeba myosin II and single-headed Acanthamoeba myosins IA, IB, and IC, which have heavy chains of 170,000, 130,000, 125,000, and 130,000 daltons, respectively, as well as different light chains. In the accompanying paper, evidence is presented that suggests that Acanthamoeba myosin IC is the same molecule as Acanthamoeba myosin IA plus a regulatory 20,000-dalton peptide. This conclusion is confirmed by the identity of the peptide maps obtained by limited proteolysis of the heavy chains of Acanthamoeba myosins IA and IC by Staphylococcus aureus V8 protease. However, peptide maps of the heavy chains of Acanthamoeba myosins IA, IB, and II obtained by limited proteolysis by the Staphylococcus protease and chymotrypsin and by chemical cleavage by cyanogen bromide and cyanylation have few, if any, peptides in common. From this evidence, and the enzymatic and subunit data in the accompanying paper, it is concluded that the three Acanthamoeba myosin isoenzymes, IA (IC), IB, and II, are products of different genes.  相似文献   

10.
We used bacterially expressed beta-galactosidase fusion proteins to localize the phospholipid binding domain of Acanthamoeba myosin IC to the region between amino acids 701 and 888 in the NH2-terminal half of the tail. Using a novel immobilized ligand lipid binding assay, we determined that myosin I can bind to several different acidic phospholipids, and that binding requires a minimum of 5 mol% acidic phospholipid in a neutral lipid background. The presence of di- and triglycerides and sterols in the lipid bilayer do not contribute to the affinity of myosin I for membranes. We confirm that the ATP-insensitive actin binding site is contained in the COOH-terminal 30 kD of the tail as previously shown for Acanthamoeba myosin IA. We conclude that the association of the myosin IC tail with acidic phospholipid head groups supplies much of the energy for binding myosin I to biological membranes, but probably not specificity for targeting myosin I isoforms to different cellular locations.  相似文献   

11.
The Mg2+-ATPase activity of Acanthamoeba myosin IA is activated by F-actin only when the myosin heavy chain is phosphorylated at a single residue. In order to gain insight into the conformational changes that may be responsible for the effects of F-actin and phosphorylation on myosin I ATPase, we have studied their effects on the proteolysis of the myosin IA heavy chain by trypsin. Trypsin initially cleaves the unphosphorylated, 140-kDa heavy chain of Acanthamoeba myosin IA at sites 38 and 112 kDa from its NH2 terminus and secondarily at sites 64 and 91 kDa from the NH2 terminus. F-actin has no effect on tryptic cleavage at the 91- and 112-kDa sites, but does protect the 38-kDa site and the 64-kDa site. Phosphorylation (which occurs very near the 38-kDa site) has no detectable effect on the tryptic cleavage pattern in the absence of F-actin or on F-actin protection of the 64-kDa site, but significantly enhances F-actin protection of the 38-kDa site. Protection of the 64-kDa site is probably due to direct steric blocking because F-actin binds to this region of the heavy chain. The protection of the 38-kDa site by F-actin may be the result of conformational changes in this region of the heavy chain induced by F-actin binding near the 64-kDa site and by phosphorylation. The conformational changes in the heavy chain of myosin IA that are detected by alterations in its susceptibility to proteolysis are likely to be related to the conformational changes that are involved in the phosphorylation-regulated actin-activated Mg2+-ATPase activities of Acanthamoeba myosins IA and IB.  相似文献   

12.
The actin-activated Mg2+-ATPase activities of phosphorylated Acanthamoeba myosins IA and IB were previously found to have a highly cooperative dependence on myosin concentration (Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1985) J. Biol. Chem. 260, 11174-11179). This behavior is reflected in the requirement for a higher concentration of F-actin for half-maximal activation of the myosin Mg2+-ATPase at low ratios of myosin:actin (noncooperative phase) than at high ratios of myosin:actin (cooperative phase). These phenomena could be explained by a model in which each molecule of the nonfilamentous myosins IA and IB contains two F-actin-binding sites of different affinities with binding of the lower affinity site being required for expression of actin-activated ATPase activity. Thus, enzymatic activity would coincide with cross-linking of actin filaments by myosin. This theoretical model predicts that shortening the actin filaments and increasing their number concentration at constant total F-actin should increase the myosin concentration required to obtain the cooperative increase in activity and should decrease the F-actin concentration required to reach half-maximal activity at low myosin:actin ratios. These predictions have been experimentally confirmed by shortening actin filaments by addition of plasma gelsolin, an F-actin capping/severing protein. In addition, we have found that actin "filaments" as short as the 1:2 gelsolin-actin complex can significantly activate Acanthamoeba myosin I.  相似文献   

13.
Acanthamoeba myosins IA and IB are single-headed, monomeric molecules consisting of one heavy chain and one light chain. Both have high actin-activated Mg2+-ATPase activity, when the heavy chain is phosphorylated, but neither seems to be able to form the bipolar filaments that are generally thought to be required for actomyosin-dependent contractility. In this paper, we show that, at fixed F-actin concentration, the actin-activated Mg2+-ATPase activities of myosins IA and IB increase about 5-fold in specific activity in a cooperative manner as the myosin concentration is increased. The myosin concentration range over which this cooperative change occurs depends on the actin concentration. More myosin I is required for the cooperative increase in activity at high concentrations of F-actin. The cooperative increase in specific activity at limiting actin concentrations is caused by a decrease in the KATPase for F-actin. The high and low KATPase states of the myosin have about the same Vmax at infinite actin concentration. Both myosins are completely bound to the F-actin long before the Vmax values are reached. Therefore, much of the actin activation must be the result of interactions between F-actin and actomyosin. These kinetic data can be explained by a model in which the cooperative shift of myosin I from the high KATPase to the low KATPase state results from the cross-linking of actin filaments by myosin I. Cross-linking might occur either through two actin-binding sites on a single molecule or by dimers or oligomers of myosin I induced to form by the interaction of myosin I monomers with the actin filaments. The ability of Acanthamoeba myosins IA and IB to cross-link actin filaments is demonstrated in the accompanying paper (Fujisaki, H., Albanesi, J.P., and Korn, E.D. (1985) J. Biol. Chem. 260, 11183-11189).  相似文献   

14.
Phosphorylation of Type I restriction-modification (R-M) enzymes EcoKI, EcoAI, and EcoR124I - representatives of IA, IB, and IC families, respectively - was analysed in vivo by immunoblotting of endogenous phosphoproteins isolated from Escherichia coli strains harbouring the corresponding hsd genes, and in vitro by a phosphorylation assay using protein kinase present in subcellular fractions of E. coli. From all three R-M enzymes, the HsdR subunit of EcoKI system was the only subunit that was phosphorylated. Further, evidence is presented that HsdR is phosphorylated in vivo only when coproduced with HsdM and HsdS subunits - as part of assembled EcoKI restriction endonuclease, while the individually produced HsdR subunit is not phosphorylated. In vitro phosphorylation of the HsdR subunit of purified EcoKI endonuclease occurs on Thr, and is strictly dependent on the addition of a catalytic amount of cytoplasmic fraction isolated from E. coli. So far this is the first case of phosphorylation of a Type I R-M enzyme reported.  相似文献   

15.
Previous studies had led to the conclusion that the globular, single-headed myosins IA and IB from Acanthamoeba castellanii contain two actin-binding sites: one associated with the catalytic site and whose binding to F-actin activates the Mg2+-ATPase activity and a second site whose binding results in the cross-linking of actin filaments and makes the actin-activated ATPase activity positively cooperative with respect to myosin I concentration. We have now prepared a 100,000-Da NH2-terminal peptide and a 30,000-Da COOH-terminal peptide by alpha-chymotryptic digestion of the myosin IA heavy chain. The intact 17,000-Da light chain remained associated with the 100,000-Da fragment, which also contained the serine residue that must be phosphorylated for expression of actin-activated ATPase activity by native myosin IA. The 30,000-Da peptide, which contained 34% glycine and 21% proline, bound to F-actin with a KD less than 0.5 microM in the presence or absence of ATP but had no ATPase activity. The 100,000-Da peptide bound to F-actin with KD = 0.4-0.8 microM in the presence of 2 mM MgATP and KD less than 0.01 microM in the absence of MgATP. In contrast to native myosin IA, neither peptide cross-linked actin filaments. The phosphorylated 100,000-Da peptide had actin-activated ATPase activity with the same Vmax as that of native phosphorylated myosin IA but this activity displayed simple, noncooperative hyperbolic dependence on the actin concentration in contrast to the complex cooperative kinetics observed with native myosin IA. These results provide direct experimental evidence for the presence of two actin-binding sites on myosin IA, as was suggested by enzyme kinetic and filament cross-linking data, and also for the previously proposed mechanism by which monomeric myosins I could support contractile activities.  相似文献   

16.
The actin-activated Mg2(+)-ATPase activities of myosins I from Acanthamoeba castellanii are fully expressed only when a single amino acid on their heavy chain is phosphorylated by myosin I heavy chain kinase. Here we show that kinase isolated by a procedure designed to minimize its phosphorylation during purification can incorporate up to 7.5 mol of phosphate/mol of enzyme when incubated with ATP, possibly by autophosphorylation. The rate of phosphorylation is enhanced about 20-fold by phosphatidylserine but is unaffected by calcium ions. Phosphorylation increases the rate at which the kinase phosphorylates the regulatory site of myosin I by about 50-fold. These results suggest that (auto?)phosphorylation may regulate the activity of myosin I heavy chain kinase in vivo. The stimulation of kinase phosphorylation by phosphatidylserine (other phospholipids have not yet been tested) is of particular interest because myosin I has been shown to be tightly associated with membranes, especially the plasma membrane.  相似文献   

17.
We have purified a cofactor protein previously shown (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697) to be required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. The purified cofactor protein is a novel myosin kinase that phosphorylates the single heavy chain, but neither of the two light chains, of Acanthamoeba myosin I. Phosphorylation of Acanthamoeba myosin I by the purified cofactor protein requires ATP and Mg2+ but is Ca2+-independent. The Mg2+-ATPase activity of phosphorylated Acanthamoeba myosin I is highly activated by F-actin in the absence of cofactor protein. Actin-activated Mg2+-ATPase activity is lost when phosphorylated Acanthamoeba myosin I is dephosphorylated by platelet phosphatase. Phosphorylation and dephosphorylation have no effect on the (K+,EDTA)-ATPase and Ca2+-ATPase activities of Acanthamoeba myosin I. These results show that cofactor protein is an Acanthamoeba myosin I heavy chain kinase and that phosphorylation of the heavy chain of this myosin is required for actin activation of its Mg2+-ATPase activity.  相似文献   

18.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

19.
The 130- and 125-kDa heavy chains of Acanthamoeba myosins IA and IB were radioactively labeled at either the regulatory phosphorylation site or the catalytic site and then subjected to controlled proteolysis by either trypsin or chymotrypsin. The labeled and unlabeled peptides generated during the course of proteolysis were identified by autoradiography and Coomassie Blue staining after separation by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. The relative positions of the phosphorylation and active sites could be deduced. The catalytic site of myosin IA is most probably within 38 kDa of one end of the 130-kDa heavy chain, and the phosphorylation site, which can be no more than 40 kDa away from the catalytic site, would then be between 38 and 78 kDa of that same end of the heavy chain. Possibly, the phosphorylation site is further restricted to the region between 38 and 64 kDa from the end of the heavy chain. The catalytic and phosphorylation sites of myosin IB are both contained within a segment of 62 kDa at one end of the 125-kDa heavy chain and are within 40 kDa of each other. The phosphorylation site may be restricted to a small segment between 60 and 62 kDa from one end of the heavy chain which would limit the possible position of the catalytic site to the region between 20 and 60 kDa of that end.  相似文献   

20.
Acanthamoeba myosin IB contains a 125-kDa heavy chain that has high actin-activated Mg2+-ATPase activity when 1 serine residue is phosphorylated. The heavy chain contains two F-actin-binding sites, one associated with the catalytic site and a second which allows myosin IB to cross-link actin filaments but has no direct effect on catalytic activity. Tryptic digestion of the heavy chain initially produces an NH2-terminal 62-kDa peptide that contains the ATP-binding site and the regulatory phosphorylation site, and a COOH-terminal 68-kDa peptide. F-actin, in the absence of ATP, protects this site and tryptic cleavage then produces an NH2-terminal 80-kDa peptide. Both the 62- and the 80-kDa peptides retain the (NH+4,EDTA)-ATPase activity of native myosin IB and both bind to F-actin in an ATP-sensitive manner. However, only the 80-kDa peptide retains a major portion of the actin-activated Mg2+-ATPase activity. This activity requires phosphorylation of the 80-kDa peptide by myosin I heavy chain kinase but, in contrast to the activity of intact myosin IB, it has a simple, hyperbolic dependence on the concentration of F-actin. Also unlike myosin IB, the 80-kDa peptide cannot cross-link F-actin filaments indicating the presence of only a single actin-binding site. These results allow the assignment of the actin-binding site involved in catalytic activity to the region near, and possibly on both sides of, the tryptic cleavage site 62 kDa from the NH2 terminus, and the second actin-binding site to the COOH-terminal 45-kDa domain. Thus, the NH2-terminal 80 kDa of the myosin IB heavy chain is functionally similar to the 93-kDa subfragment 1 of muscle myosin and most likely has a similar organization of functional domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号