首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
For understanding the factors influencing protein stability, we have analyzed the relationship between changes in protein stability caused by partially buried mutations and changes in 48 physico-chemical, energetic and conformational properties of amino acid residues. Multiple regression equations were derived to predict the stability of protein mutants and the efficiency of the method has been verified with both back-check and jack-knife tests. We observed a good agreement between experimental and computed stabilities. Further, we have analyzed the effect of sequence window length from 1 to 12 residues on each side of the mutated residue to include the sequence information for predicting protein stability and we found that the preferred window length for obtaining the highest correlation is different for each secondary structure; the preferred window length for helical, strand and coil mutations are, respectively, 0, 9 and 4 residues on both sides of the mutant residues. However, all the secondary structures have significant correlation for a window length of one residue on each side of the mutant position, implying the role of short-range interactions. Extraction of surrounding residue information for various distances (3 to 20A) around the mutant position showed the highest correlation at 8A, 6A and 7A, respectively, for mutations in helical, strand and coil segments. Overall, the information about the surrounding residues within the sphere of 7 to 8A, may explain better the stability in all subsets of partially buried mutations implying that this distance is sufficient to accommodate the residues influenced by major intramolecular interactions for the stability of protein structures.  相似文献   

2.
The conformational energy landscape of a protein determines populations of all possible conformations of the protein and also determines the kinetics of the conversion between the conformations. Interaction with ligands influences the conformational energy landscapes of proteins and shifts populations of proteins in different conformational states. To investigate the effect of ligand binding on partial unfolding of a protein, we use Escherichia coli dihydrofolate reductase (DHFR) and its functional ligand NADP+ as a model system. We previously identified a partially unfolded form of DHFR that is populated under native conditions. In this report, we determined the free energy for partial unfolding of DHFR at varying concentrations of NADP+ and found that NADP+ binds to the partially unfolded form as well as the native form. DHFR unfolds partially without releasing the ligand, though the binding affinity for NADP+ is diminished upon partial unfolding. Based on known crystallographic structures of NADP+‐bound DHFR and the model of the partially unfolded protein we previously determined, we propose that the adenosine‐binding domain of DHFR remains folded in the partially unfolded form and interacts with the adenosine moiety of NADP+. Our result demonstrates that ligand binding may affect the conformational free energy of not only native forms but also high‐energy non‐native forms.  相似文献   

3.
M D Resh 《Cell》1989,58(2):281-286
The molecular basis for membrane association of pp60v-src, the transforming protein of Rous sarcoma virus, was investigated in a cell-free system. Newly synthesized pp60v-src polypeptide, produced by in vitro translation of src mRNA, rapidly bound to plasma membranes. Binding was saturable and dependent on the presence of myristate at the amino terminus of pp60v-src. Prior treatment of membranes with heat or trypsin greatly decreased subsequent binding of pp60v-src. Membrane binding of pp60v-src was competed by a myristylated peptide containing the first 11 amino acids of the mature src sequence, but not by non-myristylated src peptide or other myristylated peptides. The specificity, saturability, and competitive nature of pp60v-src binding provide evidence for the existence of a src receptor in the plasma membrane.  相似文献   

4.
Binding of [(3)H]folic acid by isolated rat jejunal brush border membranes (BBMs) was analyzed by chromatography on small Biogel P-30 columns. Folic acid binding to BBMs exhibited a prominent pH effect with a sharp maximum at pH 5.5 to 6.0. After acid treatment to strip the BBMs of bound folate, the membranes demonstrated a wider pH optimum (5.5 to 7.5) of folate binding and a higher binding capacity. Scatchard analysis of binding experiments performed at pH 6.0 revealed the existence of two components: one with a high affinity (kd = 12 to 25 nM) and low capacity (V(max) for non-acidified BBMs = 0.259 to 0.264 pmol/mg protein, V(max) for acidified BBMs = 0.41 to 0.71 pmol/mg protein) and the other with a low affinity (kd = 1.1 to 5.1 microM and high capacity (V(max) for non-acidified BBMs = 0.93 to 1.93 pmol/mg protein, V(max) for acidified BBMs = 4.05 to 7.69 pmol/mg protein). Phosphatidylinositol-specific phospholipase C preferentially detached the high affinity component from jejunal BBMs. Phosphatidylinositol-specific phospholipase C-released folate binding protein was precipitated by antibodies to the high-affinity folate-binding protein from rat kidney. These data suggest the existence of two different folate-binding proteins in isolated rat jejunal BBMs. The high-affinity folate-binding protein shares epitopes with the folate-binding protein in the kidney.  相似文献   

5.
The binding of estramustine, a nitrogen mustard derivative of oestradiol to purified rat prostatic binding protein was studied as a test for a possible identity between this protein and the very similar estramustine-binding protein, described by Forsgren et al. In accordance with this hypothesis estramustine binds to purified prostatic binding protein with a high affinity (2.5 X 10(7)M-1). This affinity markedly exceeds the affinity of pregnenolone for this protein (0.9 X 10(6)M-1) or for a complex of prostatic binding protein, with prostatic proline-rich polypeptide, (4.7 X 10(6)M-1). In competition experiments estramustine completely suppresses the binding of [3H]pregnenolone, whereas the binding of [3H]estramustine is only partially suppressed by pregnenolone, even at high concentrations. Prostatic binding protein was separated in its F- and S-subunit by DEAE-Sepharose chromatography performed in the presence of 8 M urea. Only the S-subunit, most probably in its dimer form, displays marked estramustine and pregnenolone binding, with affinities of respectively 3.7 and 1.2 X 10(6)M-1. Recombination of both subunits results in a strong increase of estramustine binding, but not of pregnenolone binding.  相似文献   

6.
7.
Circular dichroism measurements were used to study the binding of fd gene 5 protein to fd DNA, to six polydeoxynucleotides (poly[d(A)], poly[d(T)], poly[d(I)], poly[d(C)], poly[d(A-T)], and the random copolymer poly[d(A,T)]), and to three oligodeoxynucleotides (d(pA)20, d(pA)7, and d(pT)7). Titrations of these DNAs with fd gene 5 protein were generally done in a low ionic strength buffer (5 mM Tris-HCl, pH 7.0 or 7.8) to insure tight binding, needed to obtain stoichiometric endpoints. By monitoring the CD of the nucleic acids above 250 nm, where the protein has no significant intrinsic optical activity, we found that there were two modes of binding, with the number of nucleotides covered by a gene 5 protein monomer (n) being close to either 4 or 3. These stoichiometries depended upon which polymer was titrated as well as upon the protein concentration. Single endpoints at nucleotide/protein molar ratios close to 3 were found during titrations of poly[d(T)] and fd DNA (giving n = 3.1 and 2.8 +/- 0.2, respectively), while CD changes with two apparent endpoints at nucleotide/protein molar ratios close to 4 and approximately 3 were found during titrations of poly[d(A)], poly[d(I)], poly[d(A-T)], and poly[d(A,T)] (with the first endpoints giving n = 4.1 4.0, 4.0, and 4.1 +/- 0.3, respectively). Calculations showed that the CD changes we observed during these latter titrations were consistent with a switch between two non-interacting binding modes of n = 4 and n = 3. We found no evidence for an n = 5 binding mode. One implication of our results is that the Brayer and McPherson model for the helical gene 5 protein-DNA complex, which has 5 nucleotides bound per protein monomer (G. Brayer and A. McPherson, J. Biomol. Struct. and Dyn. 2, 495-510, 1984), cannot be correct for the detailed solution structure of the complex. We interpreted the CD changes above 250 nm upon binding of the gene 5 protein to single-stranded DNAs to be the result of a slight unstacking of the bases, along with a significant alteration of the CD contributions of the individual nucleotides in the case of A-and/or T-containing DNAs. Interestingly, CD contributions attributed to nearest-neighbor interactions in free poly[d(A-T)], poly[d(A,T)], poly[d(A)], and poly[d(T)] were partially maintained in the CD spectra of the protein-saturated polymers, so that neighboring nucleotides, when bound to the protein at 20 degrees C, appeared to interact with one another in much the same manner as in the free polymers at 50 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Ivanova E  Ball M  Lu H 《Proteins》2008,71(1):467-475
Zinc-finger proteins are among the most abundant proteins in eukaryotic genomes. Tim10 and all the small Tim proteins of the mitochondrial intermembrane space contain a consensus twin CX(3)C zinc-finger motif. Zn(2+) can bind to the reduced Tim10, but not disulphide bonded (oxidized) protein. However, the zinc-binding reaction of Tim10 and of zinc-finger proteins, in general, is ill-defined. In this study, the thermodynamic and kinetic properties of zinc-binding to reduced Tim10 were investigated using circular dichroism (CD), fluorescence spectrometry, and stopped-flow fluorescence techniques. At equilibrium, coupled with the use of protein fluorescence and metal chelators, the zinc-binding affinity was determined for Tim10 to be about 8 x 10(-10)M. Then, far UV CD was used to investigate the secondary structure change upon zinc-binding of the same set of protein samples at various free Zn(2+) concentrations. Comparison between the results of CD and fluorescence studies showed that the zinc-binding reaction is not a simple one-step process. It involves formation of a binding intermediate that is structurally as unfolded as the apoTim10; subsequently, a degree of folding is induced at increased zinc concentrations in the final complex. Next, the stopped-flow fluorescence technique was used to investigate the kinetic process of the binding reaction. Data analysis shows that the reaction has a single kinetic phase at a low free Zn(2+) concentration ( approximately 1 nM), and a double kinetic phase at a high free Zn(2+) concentration. The kinetic result is consistent with that of the studies at equilibrium. Therefore, a two-step reaction model mechanism is proposed, in which zinc-binding is regulated by the initial selective-binding of Zn(2+) to Cys followed by folding. Implication of the two-step zinc-binding mechanism for Zn(2+) trafficking in the cell is discussed.  相似文献   

9.
Human plasma contains naturally occurring autoantibodies to the predominant components of the erythrocyte membrane: band 3 and spectrin bands 1 and 2 of the cytoskeleton. The titer of cytoskeletal plasma autoantibodies increases in various hemolytic conditions, suggesting that opsonization of the cytoskeleton may play an important role in the clearance of hemolyzed (not senescent) erythrocytes from the circulation. In this study, we use Alexa Fluor 488 goat anti-human IgG conjugate (Molecular Probes, Eugene, OR, USA), to characterize plasma immunoglobulin binding to erythrocyte membranes from osmotically hemolyzed cells ('ghosts'). The results show that exposure of ghosts to plasma results in 4-fold more immunoglobulin binding to the cytoskeleton than is bound to the proteins contained within the lipid bilayer. Preincubation of the ghosts at 37 degrees C causes 8-fold more immunoglobulin binding to the cytoskeleton compared to bilayer proteins. This temperature-induced change resulted from selective immunoglobulin binding to the cytoskeleton, with no change in immunoglobulin binding to bilayer proteins. However, the rate of increase in cytoskeletal antigenicity at 37 degrees C did correlate with the rate of a conformational change in band 3, a transmembrane protein which serves as a major membrane attachment site for the cytoskeleton. The results of this study suggest that the cytoskeleton is the primary target in the opsonization of hemolyzed erythrocyte membranes by naturally occurring plasma autoantibodies. The conformational changes which occur in ghosts at 37 degrees C are associated with selective exposure of new immunoglobulin binding sites on the cytoskeleton, and with a change in the structure of band 3. We propose a model suggesting that opsonization of the cytoskeleton occurs prior to the decomposition of hemolyzed erythrocytes at 37 degrees C.  相似文献   

10.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.  相似文献   

11.
Because the ligand bound to the ligand-binding domain (LBD) of nuclear hormone receptors is completely enveloped by protein, it is thought that the process of ligand binding or unbinding must involve a significant conformational change of this domain. We have used the intrinsic tryptophan fluorescence of the estrogen receptor-alpha (ERalpha) or estrogen receptor-beta (ERbeta) LBD, as well as bis-anilinonaphthalenesulfonate (bis-ANS), a probe for accessible interior regions of protein, to follow the guanidine-hydrochloride (Gua-HCl)-induced unfolding of this domain. In both cases, we find that the ER-LBD unfolding follows a two-phase process. At low Gua-HCl, the ER-LBD undergoes partial unfolding, whereas at high Gua-HCl, this domain undergoes a global unfolding, with bis-ANS binding preferentially to the partially unfolded state. The partially unfolded state of the ERalpha-LBD induced by denaturant does not bind ligand stably, but it may resemble an intermediate that this domain accesses transiently under native conditions that allow ligands to enter or exit the ligand-binding pocket.  相似文献   

12.
A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.  相似文献   

13.
GTP hydrolysis by small GTP binding proteins of the Ras superfamily is a universal reaction that controls multiple cellular regulations. Its enzymic mechanism has been the subject of long-standing debates as to the existence/identity of the general base and the electronic nature of its transition state. Here we report the high-resolution crystal structure of a small GTP binding protein, Rab11, solved in complex with GDP and Pi. Unexpectedly, a Pi oxygen and the GDP-cleaved oxygen are located less than 2.5 A apart, suggesting that they share a proton, likely in the form of a low-barrier hydrogen bond. This implies that the gamma-phosphate of GTP was protonated; hence, that GTP acts as a general base. Furthermore, this interaction should establish at, and stabilize, the transition state. Altogether, we propose a revised model for the GTPase reaction that should reconcile earlier models into a unique substrate-assisted mechanism.  相似文献   

14.
Predicting mutation-induced changes in protein stability is one of the greatest challenges in molecular biology. In this work, we analyzed the correlation between stability changes caused by buried and partially buried mutations and changes in 48 physicochemical, energetic and conformational properties. We found that properties reflecting hydrophobicity strongly correlated with stability of buried mutations, and there was a direct relation between the property values and the number of carbon atoms. Classification of mutations based on their location within helix, strand, turn or coil segments improved the correlation of mutations with stability. Buried mutations within beta-strand segments correlated better than did those in alpha-helical segments, suggesting stronger hydrophobicity of the beta-strands. The stability changes caused by partially buried mutations in ordered structures (helix, strand and turn) correlated most strongly and were mainly governed by hydrophobicity. Due to the disordered nature of coils, the mechanism underlying their stability differed from that of the other secondary structures: the stability changes due to mutations within the coil were mainly influenced by the effects of entropy. Further classification of mutations within coils, based on their hydrogen-bond forming capability, led to much stronger correlations. Hydrophobicity was the major factor in determining the stability of buried mutations, whereas hydrogen bonds, other polar interactions and hydrophobic interactions were all important determinants of the stability of partially buried mutations. Information about local sequence and structural effects were more important for the prediction of stability changes caused by partially buried mutations than for buried mutations; they strengthened correlations by an average of 27% among all data sets.  相似文献   

15.
Numerous studies investigating the cGMP-gated cation conductance in rod disk membranes have purported to measure efflux of Ca2+ entrapped in rod disk membrane vesicles. We have utilized sonication and osmotic shock as additional tests for sensitivity of cGMP- and A23187-induced Ca2+ release to elimination of the transvesicular Ca2+ gradient. We find that 1) Treatment with sonication or osmotic shock in low Ca2+ medium does not release Ca2+ from either native cGMP/Ca2(+)-loaded vesicles or solubilized, reconstituted "Ca2(+)-loaded" vesicles, 2) 70-100% of the cGMP-induced "flux" and 90-100% of the A23187-induced Ca2+ "flux" is insensitive to elimination of the Ca2+ gradient by sonication or osmotic shock in low Ca2+ medium, and 3) total amount of releasable Ca2+ is related to membrane surface area rather than vesicle entrapment volume. We conclude that 1) A23187 disrupts binding of Ca2+ to proteins and phospholipids as well as releasing entrapped Ca2+ and 2) a large fraction of the cGMP-induced release observed in rod disk vesicles is due to release of bound Ca2+.  相似文献   

16.
General anesthetics have been reported to alter the functions of G protein coupled receptor (GPCR) signaling systems. To determine whether these effects might be mediated by direct binding interactions with the GPCR or its associated G protein, we studied the binding character of halothane on mammalian rhodopsin, structurally the best understood GPCR, by using direct photoaffinity labeling with [(14)C]halothane. In the bleached bovine rod disk membranes (RDM), opsin and membrane lipids were dominantly photolabeled with [(14)C]halothane, but none of the three G protein subunits were labeled. In opsin itself, halothane labeling was inhibited by unlabeled halothane with an IC(50) of 0.9 mM and a Hill coefficient of -0.8. The stoichiometry was 1.1:1.0 (halothane:opsin molar ratio). The IC(50) values of isoflurane and 1-chloro-1,2, 2-trifluorocyclobutane were 5.0 and 15 mM, respectively. Ethanol had no effect on opsin labeling by halothane. A nonimmobilizer, 1, 2-dichlorohexafluorocyclobutane, inhibited halothane labeling by 50% at 0.05 mM. The present results demonstrate that halothane binds specifically and selectively to GPCRs in the RDM. The absence of halothane binding to any of the G protein subunits strongly suggests that the functional effects of halothane on GPCR signaling systems are mediated by direct interactions with receptor proteins.  相似文献   

17.
Computationally designed proteins of high stability provide specimen in addition to natural proteins for the study of sequence‐structure stability relationships at the very high end of protein stability spectrum. The melting temperature of E_1r26, a protein we previously designed using the A Backbone‐based Amino aCid Usage Survey (ABACUS) sequence design program, is above 110 °C, more than 50 °C higher than that of the natural thioredoxin protein whose backbone (PDB ID 1R26 ) has been used as the design target. Using an experimental selection approach, we obtained variants of E_1r26 that remain folded but are of reduced stability, including one whose unfolding temperature and denaturing guanidine concentration are similar to those of 1r26. The mutant unfolds with a certain degree of cooperativity. Its structure solved by X‐ray crystallography agrees with that of 1r26 by a root mean square deviation of 1.3 Å, adding supports to the accuracy of the ABACUS method. Analyses of intermediate mutants indicate that the substitution of two partially buried hydrophobic residues (isoleucine and leucine) by polar residues (threonine and serine, respectively) are responsible for the dramatic change in the unfolding temperature. It is suggested that the effects of mutations located in rigid secondary structure regions, but not those in loops, may be well predicted through ABACUS mutation energy analysis. The results also suggest that hydrophobic effects involving intermediately buried sidechains can be critically important for protein stability at high temperatures.  相似文献   

18.
Ganglioside-specific binding protein on rat brain membranes   总被引:6,自引:0,他引:6  
A derivative of ganglioside GT1b (IV3NeuAc,II3(NeuAc)2-GgOse4) with an active ester in its lipid portion was synthesized and covalently attached to bovine serum albumin (BSA). The conjugate, having four GT1b molecules per albumin molecule [GT1b)4BSA) was radioiodinated and used to probe rat brain membranes for ganglioside binding proteins. A ganglioside-specific, high affinity (KD = 2-4 nM), saturable (Bmax = 13-20 pmol/mg membrane protein) binding site for 125I-(GT1b)4BSA was demonstrated on detergent-solubilized rat brain membranes adsorbed to filters. 125I-(GT1b)4BSA binding was tissue-specific (more than 35-fold greater to brain than to liver membranes) and was nearly eliminated by pretreatment of brain membrane-adsorbed filters with trypsin (1 microgram/ml). Underivatized gangliosides added as mixed detergent-lipid micelles blocked 125I-(GT1b)4BSA binding to brain membranes; structurally related GQ1b, GT1b, and GD1b were the most potent (half-maximal inhibition at 70-110 nM), while half-maximal inhibition by other gangliosides (GD3, GD1a, GM3, GM2, and GM1) required 5-20-fold higher concentrations. Other sphingolipids, neutral glycosphingolipids, and glycoproteins were poor inhibitors, and treatment of (GT1b)4BSA with neuraminidase attenuated its binding. Although most phospholipids were noninhibitory, phosphatidylinositol and phosphatidylglycerol inhibited half-maximally at 400-600 nM. However, inhibition of 125I-(GT1b)4BSA binding by gangliosides was competitive and reversible while that by phosphatidylinositol and phosphatidylglycerol was not. Ganglioside-protein conjugate binding reveals ganglioside-specific brain membrane receptors.  相似文献   

19.
The ionization of 4-nitroimidazole to 4-nitroimidazolate was investigated as a function of ionic strength. The apparent pKa varies from 8.99 to 9.50 between 0.001 and 1.0 M ionic strength, respectively, at 25 degrees C. The ionic strength dependence of this ionization is anomalous. The binding of 4-nitroimidazole by horse metmyoglobin was studied between pH 5.0 and 11.5 and as a function of ionic strength between 0.01 and 1.0 M. The association rate constant is pH-dependent, varying from 24 M(-1)s(-1) at pH 5 to a maximum value of 280 M(-1)s(-1) at pH 9.5 and then decreasing to 10 M(-1)s(-1) at pH 11.5 in 0.1 M ionic strength buffers. The dissociation rate constant has a much smaller pH dependence, varying from 0.082 s(-1) at low pH to 0.035 s(-1) at high pH, with an apparent pKa of 6.5. The binding affinity of 4-nitroimidazole to horse metmyoglobin is about 2.5 orders of magnitude stronger than that for imidazole and this increased affinity is attributed to the much slower dissociation rate for 4-nitroimidazole compared to that of imidazole. Although the ionic strength dependence of the binding rate is small and secondary kinetic salt effects can account for the ionic strength dependence of the association rate constant, the pH dependence of the rate constants and microscopic reversibility arguments indicate that the anionic form of the ligand binds more rapidly to all forms of metmyoglobin than does the neutral form of the ligand. However, the spectrum of the complex is similar to model complexes involving neutral imidazole and not imidazolate. The latter observation suggests that the initial metmyoglobin/4-nitroimidazolate complex rapidly binds a proton and the neutral form of the bound ligand is stabilized, probably through hydrogen binding with the distal histidine.  相似文献   

20.
Previously, we have shown that protein kinase C (PKC) forms a direct high-affinity, isozyme-specific and membrane lipid-independent interaction with Rho GTPases [Slater, S. J., Seiz, J. L., Stagliano, B. A., and Stubbs, C. D. (2001) Biochemistry 40, 4437-4445]. Since the cellular activation of PKCalpha involves an initial translocation from cytosolic to membrane compartments, the present study investigates the interdependence between the direct protein-protein interaction of PKCalpha with the Rho GTPase, Cdc42, and the protein-lipid interactions of PKCalpha with membranes. It was hypothesized that the interaction of PKCalpha with membrane-bound Cdc42 would contribute to the overall membrane-binding affinity of the kinase by providing an additional anchor. However, it was found that the incorporation of isoprenylated Cdc42 into membranes resulted in an apparent decrease in the membrane-binding affinity of PKCalpha, whereas the association of PKCbetaI, PKCdelta, PKCepsilon, and PKCzeta was each unaffected. The presence of membrane-bound Cdc42 resulted in a rightward shift in both the PS- and Ca2+-concentration response curves for PKCalpha membrane association and for the ensuing activation, whereas the maximal levels of binding and activation attained at saturating PS and Ca2+ concentrations were in each case unaffected. Overall, these findings suggest that PKCalpha undergoes a isozyme-specific interaction with membrane-bound Cdc42 to form a PKCalpha-Cdc42 complex, which possesses a membrane-binding affinity that is reduced relative to that of the individual components due to competition between Cdc42 and PS/Ca2+ for binding to PKCalpha. Consistent with this, it was found that the interaction of PKCalpha with membrane-bound Cdc42 was accompanied by the physical dissociation of the PKCalpha-Cdc42 complex from membranes. Thus, the study provides a novel mechanism by which the membrane association and activation of PKCalpha and Cdc42 may be regulated by competing protein-protein and protein-lipid interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号