首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The interplay between the innate and acquired immune systems in chronic inflammation is not well documented. We have investigated the mechanisms of inflammation in murine zymosan-induced arthritis (ZIA) in the light of recent data on the roles of Toll-like receptor 2 (TLR2) and Dectin-1 in the activation of monocyte/macrophages by zymosan. The severity of inflammation, joint histology, lymphocyte proliferation and antibody production in response to zymosan were analyzed in mice deficient in TLR2 and complement C3, and the effects of Dectin-1 inhibition by laminarin were studied. In comparison with wild-type animals, TLR2-deficient mice showed a significant decrease in the early (day 1) and late phases (day 24) of joint inflammation. C3-deficient mice showed no differences in technetium uptake or histological scoring. TLR2-deficient mice also showed a significant decrease in lymph node cell proliferation in response to zymosan and a lower IgG antibody response to zymosan at day 25 in comparison with wild-type controls, indicating that TLR2 signalling has a role in the development of acquired immune responses to zymosan. Although laminarin, a soluble β-glucan, was able to significantly inhibit zymosan uptake by macrophages in vitro, it had no effect on ZIA in vivo. These results show that ZIA is more prolonged than was originally described and involves both the innate and acquired immune pathways. C3 does not seem to have a major role in this model of joint inflammation.  相似文献   

2.
Viral infection induces the production of interleukin (IL)-1beta and IL-18 in macrophages through the activation of caspase-1, but the mechanism by which host cells sense viruses to induce caspase-1 activation is unknown. In this report, we have identified a signaling pathway leading to caspase-1 activation that is induced by double-stranded RNA (dsRNA) and viral infection that is mediated by Cryopyrin/Nalp3. Stimulation of macrophages with dsRNA, viral RNA, or its analog poly(I:C) induced the secretion of IL-1beta and IL-18 in a cryopyrin-dependent manner. Consistently, caspase-1 activation triggered by poly(I:C), dsRNA, and viral RNA was abrogated in macrophages lacking cryopyrin or the adaptor ASC (apoptosis-associated speck-like protein containing a caspase-activating and recruitment domain) but proceeded normally in macrophages deficient in Toll-like receptor 3 or 7. We have also shown that infection with Sendai and influenza viruses activates the cryopyrin inflammasome. Finally, cryopyrin was required for IL-1beta production in response to poly(I:C) in vivo. These results identify a mechanism mediated by cryopyrin and ASC that links dsRNA and viral infection to caspase-1 activation resulting in IL-1beta and IL-18 production.  相似文献   

3.
4.
Dopamine receptors are involved in several immunological diseases. We previously found that dopamine D3 receptor (D3R) on mast cells showed a high correlation with disease activity in patients with rheumatoid arthritis, but the mechanism remains largely elusive. In this study, a murine collagen-induced arthritis (CIA) model was employed in both DBA/1 mice and D3R knockout mice. Here, we revealed that D3R-deficient mice developed more severe arthritis than wild-type mice. D3R suppressed mast cell activation in vivo and in vitro via a Toll-like receptor 4 (TLR4)-dependent pathway. Importantly, D3R promoted LC3 conversion to accelerate ubiquitin-labeled TLR4 degradation. Mechanistically, D3R inhibited mTOR and AKT phosphorylation while enhancing AMPK phosphorylation in activated mast cells, which was followed by autophagy-dependent protein degradation of TLR4. In total, we found that D3R on mast cells alleviated inflammation in mouse rheumatoid arthritis through the mTOR/AKT/AMPK-LC3-ubiquitin-TLR4 signaling axis. These findings identify a protective function of D3R against excessive inflammation in mast cells, expanding significant insight into the pathogenesis of rheumatoid arthritis and providing a possible target for future treatment.Subject terms: Immunological disorders, Rheumatic diseases  相似文献   

5.
6.
The IL-1R/Toll-like receptor (TLR) superfamily of receptors has a key role in innate immunity and inflammation. In this study, we report that streptococcal cell wall (SCW)-induced joint inflammation is predominantly dependent on TLR-2 signaling, since TLR-2-deficient mice were unable to develop either joint swelling or inhibition of cartilage matrix synthesis. Myeloid differentiation factor 88 (MyD88) is a Toll/IL-1R domain containing adaptor molecule known to have a central role in both IL-1R/IL-18R and TLR signaling. Mice deficient for MyD88 did not develop SCW-induced arthritis; both joint swelling and disturbance of cartilage chondrocyte anabolic function was completely abolished. Local levels of proinflammatory cytokines and chemokines in synovial tissue washouts were strongly reduced in MyD88-deficient mice. Histology confirmed the pivotal role of MyD88 in acute joint inflammation. TLR-2-deficient mice still allow influx of inflammatory cells into the joint cavity, although the number of cells was markedly reduced. No influx of inflammatory cells was seen in joints of MyD88-deficient mice. In addition, cartilage matrix proteoglycan loss was completely absent in MyD88 knockout mice. These findings clearly demonstrated that MyD88 is a key component in SCW-induced joint inflammation. Since agonists of the Toll-like pathway are abundantly involved in both septic and rheumatoid arthritis, targeting of MyD88 may be a novel therapy in inflammatory joint diseases.  相似文献   

7.
Obese adipose tissue is characterized by increased infiltration of macrophages, suggesting that they might represent an important source of inflammation. We have provided in vitro evidence that saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced adipocyte lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 (TLR4) to induce the inflammatory changes in macrophages. Here we show the attenuation of adipose tissue inflammation in C3H/HeJ mice carrying a functional mutation in the TLR4 gene relative to control C3H/HeN mice during a 16-week high-fat diet. We also find that adiponectin mRNA expression is significantly reduced by co-culture of hypertrophied 3T3-L1 adipocytes and C3H/HeN peritoneal macrophages, which is reversed, when co-cultured with C3H/HeJ peritoneal macrophages. This study provides in vivo evidence that TLR4 plays a role in obesity-related adipose tissue inflammation and thus helps to identify the therapeutic targets that may reduce obesity-induced inflammation and the metabolic syndrome.  相似文献   

8.
Leptin is produced almost exclusively by adipocytes and regulates body weight at the hypothalamic level. In addition, recent studies showed that leptin plays an important role in T lymphocyte responses. To examine the role of leptin in Ag-induced arthritis, the development of joint inflammation was assessed in immunized leptin-deficient mice (ob/ob), +/?, and wild-type mice (+/+) following the administration of methylated BSA into the knees. The results showed that ob/ob mice developed less severe arthritis compared with control mice. The levels of IL-1beta and TNF-alpha mRNA in the synovium of arthritic knees were lower in ob/ob than in +/? mice. In vitro Ag-specific T cell proliferative responses were significantly decreased in ob/ob mice with lower IFN-gamma and higher IL-10 production, suggesting a shift toward a Th2-type response in ob/ob mice. The serum levels of anti-methylated BSA Abs of any isotype were significantly decreased in arthritic ob/ob mice compared with controls. Essentially identical results were obtained in db/db mice, which lack the expression of the long isoform of leptin receptor. By RT-PCR, we observed that B lymphocytes express leptin receptor mRNA, indicating that in addition to its effect on the cellular response, leptin may exert a direct effect on B cell function. In conclusion, leptin contributes to the mechanisms of joint inflammation in Ag-induced arthritis by regulating both humoral and cell-mediated immune responses.  相似文献   

9.
Macrophages are known to play a key role during inflammation in rheumatoid arthritis (RA). Inflammatory macrophages have increased expression of CD64, the high-affinity receptor for IgG. Targeting this receptor through a CD64-directed immunotoxin, composed of an Ab against CD64 and Ricin A, results in effective killing of inflammatory macrophages. In this study, we show elevated levels of CD64 on synovial macrophages in both synovial lining and synovial fluid in RA patients. The CD64-directed immunotoxin efficiently eliminates activated synovial macrophages in vitro, while leaving quiescent, low CD64-expressing macrophages unaffected. To examine whether killing of CD64 macrophages results in therapeutic effects in vivo, we established an adjuvant arthritis (AA) model in newly generated human CD64 (hCD64) transgenic rats. We demonstrate that hCD64 regulation in this transgenic rat model is similar as in humans. After AA induction, treatment with CD64-directed immunotoxin results in significant inhibition of disease activity. There is a direct correlation between immunotoxin treatment and decreased macrophage numbers, followed by diminished inflammation and bone erosion in paws of these hCD64 transgenic rats. These data support synovial macrophages to play a crucial role in joint inflammation in AA in rats and in human RA. Selective elimination of inflammatory macrophages through a CD64-directed immunotoxin may provide a novel approach for treatment of RA.  相似文献   

10.
OBJECTIVE: Previous studies have demonstrated that neutralization of macrophage migration inhibitory factor (MIF) by anti-MIF antibody decreases joint destruction in the collagen-induced arthritis model. The present study was undertaken to investigate whether selective deletion of MIF inhibits inflammation and joint destruction of the anti-type II collagen antibody (anti-CII Ab)/lipopolysaccharide (LPS)-induced arthritis in mice, in order to determine the role of this cytokine in inflammatory arthritis. DESIGN: Anti-CII Ab/LPS-induced arthritis was induced in MIF-deficient and wild-type mice. The effects of anti-MIF polyclonal antibody administration on anti-CII Ab-induced arthritis were also evaluated. RESULTS: The expression of MIF protein and mRNA was induced in anti-CII Ab/LPS-induced arthritis joint tissues. Histopathological arthritis scores for synovial inflammation induced by anti-CII Ab/LPS -induced arthritis were significantly decreased in anti-MIF Ab-treated mice and in MIF-deficient mice compared to wild-type mice. In addition, mRNA levels of MMP-13 and MIP-2 in anti-CII Ab/LPS-induced arthritis joint tissues were significantly reduced in MIF-deficient mice compared to wild-type control mice. CONCLUSIONS: These results indicate that MIF plays a critical role in inflammation and joint destruction in the anti-CII Ab/LPS-induced arthritis model in mice, in part via induction of MMP-13 and neutrophil infiltration through the induction of MIP-2.  相似文献   

11.
Respiratory RNA viruses responsible for the common cold often worsen airway inflammation and bronchial responsiveness, two characteristic features of human asthma. We studied the effects of dsRNA, a nucleotide synthesized during viral replication, on airway inflammation and bronchial hyperresponsiveness in murine models of asthma. Intratracheal instillation of poly I:C, a synthetic dsRNA, increased the airway eosinophilia and enhanced bronchial hyperresponsiveness to methacholine in OVA-sensitized, exposed rats. These changes were associated with induction of cyclooxygenase-2 (COX-2) expression and COX-2-dependent PGD2 synthesis in the lungs, particularly in alveolar macrophages. The direct intratracheal instillation of PGD2 enhanced the eosinophilic inflammation in OVA-exposed animals, whereas pretreatment with a dual antagonist against the PGD2 receptor-(CRTH2) and the thromboxane A2 receptor, but not with a thromboxane A2 receptor-specific antagonist, nearly completely eliminated the dsRNA-induced worsening of airway inflammation and bronchial hyperresponsiveness. CRTH2-deficient mice had the same degree of allergen-induced airway eosinophilia as wild-type mice, but they did not exhibit a dsRNA-induced increase in eosinophil accumulation. Our data demonstrate that COX-2-dependent production of PGD2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenetic factors responsible for the dsRNA-induced enhancement of airway inflammation and responsiveness.  相似文献   

12.
Double-stranded RNA (dsRNA), the genetic material for many RNA viruses, induces robust host immune responses via pattern recognition receptors, which include Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I-like receptors (RLRs) and the multi-protein NLRP3 inflammasome complex. The engagement of dsRNA receptors or inflammasome activation by viral dsRNA initiates complex intracellular signaling cascades that play essential roles in inflammation and innate immune responses, as well as the resultant development of adaptive immunity. This review focuses on signaling pathways mediated by TLR3, RLRs and the NLRP3 inflammasome, as well as the potential use of agonists and antagonists that target these pathways to treat disease.  相似文献   

13.
Neutrophils are prominent participants in the joint inflammation of human rheumatoid arthritis (RA) patients, but the extent of their role in the inductive phase of joint inflammation is unknown. In the K/BxN mouse RA model, transfer of autoreactive Ig from the K/BxN mouse into mice induces a rapid and profound joint-specific inflammatory response reminiscent of human RA. We observed that after K/BxN serum transfer, the earliest clinical signs of inflammation in the ankle joint correlated with the presence of neutrophils in the synovial regions of recipient mouse ankle joints. In this study, we investigated the role of neutrophils in the early inflammatory response to transferred arthritogenic serum from the K/BxN transgenic mouse. Mice were treated with a neutrophil-depleting mAb before and following transfer of arthritogenic serum and scored for clinical indications of inflammation and severity of swelling in ankle joints and front paws. In the absence of neutrophils, mice were completely resistant to the inflammatory effects of K/BxN serum. Importantly, depletion of neutrophils in diseased recipient mice up to 5 days after serum transfer reversed the inflammatory reaction in the joints. Transfer of serum into mice deficient in the generation of nitrogen or oxygen radicals (inducible NO synthase 2 or gp91(phox) genes, respectively) gave normal inflammatory responses, indicating that neither pathway is essential for disease induction. These studies have identified a critical role for neutrophils in initiating and maintaining inflammatory processes in the joint.  相似文献   

14.
Our results show that cytokines derived from macrophages play an important role in pathogenesis of arthritis triggered by CpG oligodinucleotide (CpG ODN). IL-12 is in this respect an important immunomodulator during the development of joint inflammation.  相似文献   

15.
Our results show that cytokines derived from macrophages play an important role in pathogenesis of arthritis triggered by CpG oligodinucleotide (CpG ODN). IL-12 is in this respect an important immunomodulator during the development of joint inflammation.  相似文献   

16.
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to induction of interferons (IFNs) and proinflammatory cytokines, and innate antiviral response. Here we identified the RNA-binding protein Mex3B as a positive regulator of TLR3-mediated signaling by expression cloning screens. Cells from Mex3b−/− mice exhibited reduced production of IFN-β in response to the dsRNA analog poly(I:C) but not infection with RNA viruses. Mex3b−/− mice injected with poly(I:C) was more resistant to poly(I:C)-induced death. Mex3B was associated with TLR3 in the endosomes. It bound to dsRNA and increased the dsRNA-binding activity of TLR3. Mex3B also promoted the proteolytic processing of TLR3, which is critical for its activation. Mutants of Mex3B lacking its RNA-binding activity inhibited TLR3-mediated IFN-β induction. These findings suggest that Mex3B acts as a coreceptor of TLR3 in innate antiviral response.  相似文献   

17.
BACKGROUND: Recombinant replication-deficient adenoviral vectors (recAd) are attractive candidates for DNA vaccination approaches because they are able to activate the innate and adaptive immune systems. Here we explore the ability of recAd to transduce and activate subsets of dendritic cells, namely plasmacytoid dendritic cells (pDC) and conventional dendritic cells (cDC). METHODS: DC were derived from bone marrow precursors in vitro with the help of FLT3-ligand. Sorted populations of pDC and cDC were infected with recAd at various multiplicities of infection. Transduction efficiency, phenotypic maturation and production of IFN-alpha as well as IL-6 were assessed. Additionally, activation of DC and induction of cytotoxic T lymphocytes (CTL) were determined in vivo. The role of Toll-like receptor (TLR) 9 in recAd recognition was investigated as it has previously been shown that DNA viruses are recognized via this receptor. RESULTS: RecAd can efficiently transduce pDC as well as cDC in vitro. Both DC subsets mature and produce IFN-alpha upon interaction with recAd. In the absence of TLR9, activation and cytokine production was only detected in cDC but not in pDC. Importantly, induction of CD8+ CTL following in vivo injection of recAd was similar in TRL9-deficient mice when compared with wildtype controls. CONCLUSIONS: RecAd can efficiently transduce and activate both pDC and cDC. pDC required TLR9 to detect the presence of recAd whereas cDC also recognized recAd independently of TLR9. These unique immunostimulatory properties support the future development of recombinant Ad as a vector for DNA vaccine approaches.  相似文献   

18.
19.
PolyI:C, a synthetic double-stranded (ds)RNA, and viruses act on cells to induce IFN-beta which is a key molecule for anti-viral response. Although dsRNA is a virus-specific signature and a ligand for human Toll-like receptor 3 (TLR3), largely uncharacterized multiple pathways associate virus-mediated IFN-beta induction. Here, we demonstrated that laboratory-adapted but not wild-type strains of measles virus (MV) up-regulated TLR3 expression both in dendritic cells and epithelial cell line A549. The kinetics experiments with the laboratory MV strain revealed that TLR3 was induced late compared to IFN-beta and required new protein synthesis. Furthermore, neutralizing antibodies against IFN-beta or IFNAR (Interferon-alpha/beta receptor) suppressed MV-induced TLR3 induction, indicating that type I IFN, IFN-alpha/beta, is critical for MV-mediated TLR3 induction. Yet, a recently identified virus-inducible IFN, the IFN-lambda, did not contribute to TLR3 expression. A virus-responsive element that up-regulates TLR3 was identified in the TLR3-promoter region by reporter gene experiments. The ISRE, a recently reported site for IFN-beta induction, but not STAT binding site, located around -30bp of TLR3 promoter responded to MV to induce TLR3 expression. This further indicates the importance of type I IFN for TLR3 up-regulation in the case of viral infection. In HeLa and MRC5 cells, augmented production of IFN-beta was observed in response to dsRNA when TLR3 had been induced beforehand. Thus, the MV-induced expression of TLR3 may reflect amplified IFN production that plays a part in host defense to viral infection.  相似文献   

20.
Scavenger receptors and Toll-like receptors (TLRs) cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (ds)RNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号