首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interpretation of subfossil records of wild plant species with respect to both environmental conditions and past vegetation is complicated by the following: (1) production and dispersal of plant remains including diaspores, (2) the formation of the soil flora, (3) taphonomic processes and differential preservation that act on subfossil assemblages and (4) methods applied to produce subfossil records. Whereas the similarity between recent plant communities and seed banks is often weak, the relationship between past vegetation and subfossil assemblages is still more complicated. It is therefore unlikely that macrofossil assemblages derived from soil samples can be considered as pure samples representing particular palaeobiocoenoses. The assumption that plant communities, in the past, may have been in some way aberrant with respect to composition and that the ecological ranges of species varied during the Quaternary has to be rejected, if not based on well considered assumptions or evidence from pure samples. Only if a sufficient number of suitable studies is available, which enable evaluation between all kinds of plant communities and their respective seed floras, can progress be made with regard to the reconstruction of past vegetation and environmental conditions. As long as these data are not available, the ecological interpretation of particular subfossil assemblages isolated from soil samples has to be carefully evaluated within their particular context.  相似文献   

2.
Question: How do species traits and abiotic factors influence the extent of hydrochorous dispersal into and out of a small floodplain area along a free‐flowing river in The Netherlands? Location: The Kappersbult nature reserve (53°07′28″N, 6°37′14″E), which is a floodplain along the Dutch River Drentsche Aa. Methods: Seeds transported by the river were collected in fine mesh nets for 24 consecutive hours once or twice a week for 1 year, upstream and downstream of the studied floodplain. Data on the captured seeds were related to species traits and abiotic factors and species composition in the floodplain. Results: The floodplain functioned both as a seed source and sink. High levels of river water seemed to promote seed transport to or from the floodplain. Seeds of riverbank species occurred significantly more often in the river water than expected. Net source species had significantly higher seed production, taller stature and higher seed buoyancy, but lower site elevation than net sink species. Seed weight was significantly higher for sink species than for other species. Conclusion: Our study found that inundation, and therefore more natural river water management, is a prerequisite for seed transport to and from a floodplain. The restoration of target floodplain vegetation may be successful for common species that produce many seeds and grow in proximity to the river. Consequently, it is expected that the probability of restoring vegetation types that occur further from the river, such as wet grasslands, by hydrochorous dispersal is low.  相似文献   

3.
Abstract. A 2‐yr field experiment was used to determine the response of riparian plants to accumulation of litter or silt in a river flood‐plain meadow in northern Sweden. Such disturbances occur regularly in free‐flowing rivers but are likely to change as a result of global changes in land use or climate. We anticipated that plants with different traits would differ in their response to litter and silt accumulation. We quantified plant response as relative change in above‐ground biomass, and regressed it on either litter mass or silt depth, and on plant traits such as lateral spread, plant height, relative growth rate, seed mass and seed persistence in soil. The relative changes in riparian plant biomass following litter or silt accumulation were negatively related to litter mass and silt depth, and positively related to most examined plant traits such as seed mass, seed persistence and lateral spread. The vegetation recovery in the second season was largely determined by plant traits; litter or silt accumulation had no significant effect. Litter accumulation selected for large‐seeded species, but silt accumulation selected for species with strong ability of lateral spread. Seed persistence was a useful variable in predicting species recovery from both litter and silt accumulation. Plant height was negatively related to plant recovery, but relative growth rate was not significantly related to relative change in plant biomass after silt or litter accumulation. Our results imply that plant traits are important variables to consider for predicting the responses of riparian vegetation to deposition of organic and inorganic matter.  相似文献   

4.
The patterns of repositioning by wind and water following their initial dispersal from the parent plant, of winged and unwinged seeds of the heteromorphic halophyte Spergularia salina were Investigated experimentally in both dense vegetation and bare ground under field conditions in a sea shore meadow in eastern Sweden Seeds were placed in situ in the field, and after four days with wind as the sole dispersing agency, 19% of the seeds were repositioned After another 11 days, during which both wind and water acted as dispersing agencies, all seeds of both types had either become repositioned and were still visible (1/3 of the seeds), had penetrated into the ground at the point of release or after dispersal (1/3), or were not recovered (1/3) The probability to become lifted secondarily by water was similar in both seed types Of those seeds repositioned and recovered on the ground, more of the winged type had been transported any distance horizontally than the unwinged type The seed dispersal curve was strongly skewed to the left, and the winged seed type was transported slightly further than the unwinged type, both during primary and secondary dispersal All seeds were transported further when placed on bare soil than when placed in dense vegetation Vertical transportation was quicker in dense vegetation, and unwinged seeds disappeared more quickly into the ground In dense vegetation, unwinged seeds were more frequently encountered in the seed bank than winged seeds, whereas in the absence of vegetation cover, seeds of both types recovered in the soil were found in equal shares  相似文献   

5.
Questions: Is the red fox a potential vector for epizoochorous seed dispersal? Can seed attachment and retention be predicted from plant and seed traits? Location: Grasslands in southern Norway. Methods: Epizoochorous seed attachment on the red fox was studied by walking a dummy fox through the vegetation and comparing seeds found on the dummy with the estimated seed availability in the vegetation. Seed retention, i.e. the ability of different seeds to stay on the fox, was estimated in a separate experiment. Seed attachment and retention were related to plant and seed traits using statistical models that account for heteroscedasticity and zero‐inflated data. Results: The majority of seeds attached to the fox originated from a few species, but also species without specific seed traits that are supposed to enhance epizoochory attached at least some seeds to the fox. The probability of seed attachment was positively related to plant height, bristle and hooked seed appendages, and negatively related to winged appendages, seed mass, and seed sphericity. Seed retention was positively related to the seed traits bristles, hooks and pappus. For several species, the results indicate a high potential for dispersal over long distances. Conclusions: In modern agricultural landscapes, large herbivores are often restricted in their mobility or are found at low densities, and other animal vectors may therefore be important for seed dispersal. In our study, a range of plant species were able to disperse by attaching seeds to, and having their seeds retained in, the fox fur some distance. We suggest that the red fox may be an important vector for epizoochorous seed dispersal in the agricultural landscape.  相似文献   

6.
The total production of plant litter and the proportion of leaf litter are higher in riparian corridors than in upland ecosystems throughout the world. Periodical water-level fluctuation is believed to be the major cause of these differences. During flood periods, much plant litter is redistributed locally and between regions, following erosion, transport, and deposition of litter. The importance of litter redistribution varies with factors such as flood regime, topography, and vegetation. Litter from the riparian corridor is usually a major constituent of the litter transported by the river. The decomposition of litter is faster in riparian corridors than in upland systems due to a higher rate of leaching and a higher decomposer activity. Relative warmth and soil fertility may also enhance litter decomposition in riparian corridors. In general, accumulated litter affects plants physically by burying them, chemically by adding nutrients and phytotoxins, and biologically by adding diaspores. The physical impact of a certain amount of litter may be weaker in riparian corridors than in uplands because the rapid decomposition reduces the time that litter is present. In other words, higher amounts of litter are needed to affect riparian vegetation than are needed to affect other types of vegetation. The nutrient content of riverborne litter is reduced by leaching, but dissolved nutrients from litter might still reach the riparian vegetation, e.g., by adsorbing to inorganic particles. Phytotoxins are probably unimportant in riparian systems. The input to the riparian corridor of plant diaspores, borne by litter packs in the river, may be large. Indirect biological effects of litter, including its diaspores, are the attracting of animals and microbes that may influence the plant community, and the creation of bare soil for plant colonization.  相似文献   

7.
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration, but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems.  相似文献   

8.
Jiao J Y  Zou H Y  Jia Y F  Wang N 《农业工程》2009,29(2):85-91
The relationship between vegetation and soil erosion deserves attention due to its scientific importance and practical applications. A great deal of information is available about the mechanisms and benefits of vegetation in the control of soil erosion, but the effects of soil erosion on vegetation development and succession is poorly documented. Research shows that soil erosion is the most important driving force for the degradation of upland and mountain ecosystems. Soil erosion interferes with the process of plant community development and vegetation succession, commencing with seed formation and impacting throughout the whole growth phase and affecting seed availability, dispersal, germination and establishment, plant community structure and spatial distribution. There have been almost no studies on the effects of soil erosion on seed development and availability, of surface flows on seed movement and redistribution, and their influences on soil seed bank and on vegetation establishment and distribution. However, these effects may be the main cause of low vegetation cover in regions of high soil erosion activity and these issues need to be investigated. Moreover, soil erosion is not only a negative influence on vegetation succession and restoration, but also a driving force of plant adaptation and evolution. Consequently, we need to study the effects of soil erosion on ecological processes and on development and regulation of vegetation succession from the points of view of pedology and vegetation, plant and seed ecology, and to establish an integrated theory and technology for deriving practical solutions to soil erosion problems.  相似文献   

9.
Question: The vegetation in a polder after partial tidal restoration does not resemble the targeted salt‐marsh vegetation. Is this difference in vegetation due to lack of dispersal or unsuitable abiotic conditions? What could be done for a better restoration of the site? Location: Northwestern France. Methods: Seeds were trapped at the single inlet of the polder with a 200‐μ m mesh net to estimate inputs of seeds from the bay. In parallel, seed dispersal was studied in the polder by placing Astroturf® seed traps on the surface of the sediment at three different elevations in three distinct areas. Abiotic conditions such as flooding frequency, water table level and soil salinity were monitored. Results: All but one species from the adjacent salt marshes were trapped at the inlet. Not all of these species were on the seed traps inside the polder. Seed dispersal was not homogeneous in the polder and seed trap content mostly discriminated in function of their elevation. Salinity and water logging at the bottom of the slope were very high compared to tolerance of most halophytes but decreased rapidly higher up the slope. Conclusions: The development of salt marsh target species is highly restricted by limited hydrochory inside the polder but also by unfavourable soil conditions induced by the actual hydrological regime. Halophytes are excluded at the bottom of the slope by abiotic conditions and out‐competed by sub‐halophytes higher up. In order to restore salt marsh vegetation inside the polder, a larger opening should be induced in order to increase the flooded surface, and diminish water logging and flooding frequencies.  相似文献   

10.
Questions: Does the litter layer of Pteridium aquilinum (bracken) act as a barrier to certain species in the seed bank? Does bracken control/restoration treatment affect seed transfer through the litter layer? Location: Five experiments at three sites across the UK covering two major vegetation types; acid‐grassland and heath‐land. Methods: At each experiment a range of bracken control and vegetation restoration treatments were applied for about ten years. The seed bank was sampled in both the bracken litter and the soil. The cover (%) of each species in the vegetation and the bracken litter abundance (cover and depth) was also estimated. Results: The bracken litter layer acts as an inert barrier as it contained a large proportion of seeds available in the litter‐soil profile (38%– 67% of the total). Bracken litter depth and cover also influenced significantly the seed bank composition in both the bracken litter and the soil. These effects were site‐specific, and species‐specific. The application of treatments changed significantly the balance between seed inputs and outputs in the bracken litter layer for some species. This was either a positive or negative response relative to the untreated control plots. Conclusion: For heathland and acid‐grassland restoration, the bracken litter layer may be an important seed source, but it must be disturbed particularly before seed addition.  相似文献   

11.

Aims

Rivers are important corridors for the movement, migration and dispersal of aquatic organisms, including seeds from riparian plants. Although tropical dry forests (TDF) are among the most extensive and floristically rich ecosystems of tropical habitats, and the most globally endangered ecosystem, less attention has been given to riparian corridors within this ecosystem. Although most TDFs manifest peak seed dispersal during dry seasons, we hypothesized that riparian corridors may show a dispersal peak during the rainy season, due to an anticipated ‘sweep or drag effect’, resulting from river overflow and bank erosion. Our main aims were to investigate whether there were any differences in the seed communities transported by the river to sites in rainy as opposed to dry seasons, and to evaluate any possible relationship between the riparian seed community and river flow.

Location

Amacuzac River, drainage of the Balsas basin, State of Morelos, Mexico.

Methods

To evaluate the above assumption, we associated Amacuzac River flow with the number of species and seeds dispersed by water. We also characterized and evaluated differences between seed communities transported by the river during the rainy and dry seasons, and between four different sites located along the river. We used univariate and ordination NMDS techniques to evaluate patterns between seasons at the community level.

Results

Forty‐five plant species were identified from 909 seeds collected from the river. The composition of riparian seed communities was markedly different between seasons but not between sites. Seed abundances were significantly higher in the rainy than in the dry season and varied between sites. Seed species diversity in the river (H’ = 1.6–1.9) showed no significant differences between seasons or sites, but species assemblages and dominance varied according to season. Ordination techniques and subsequent fitting analyses showed that seed species composition was positively associated with river flow.

Conclusions

Seed dispersal patterns generated by rivers are significant mechanisms for structuring the composition and distribution of the riparian plant community in Mexican TDF. Varying species assemblages and seed abundance dispersed by the river throughout the year is a relevant and until now unknown consequence that may affect the dynamics and composition of riparian plant communities in this region. This study initiative will promote new avenues of research regarding plant establishment and succession.  相似文献   

12.
Abstract. We compare the dispersal spectra of diaspores from varied plant communities in Australia, New Zealand, and North America, assigning dispersal mode to each diaspore type on the basis of apparent morphological adaptations. Species with ballistic and external dispersal modes were uncommon in most communities we surveyed. Ant dispersal was also rather uncommon, except in some Australian sclerophyll vegetation types. The frequency of vertebrate dispersal ranged up to 60% of the flora, the highest frequencies occurring in New Zealand forests. Wind dispersal ranged as high as 70% of the flora, with the highest values in Alaska, but usually comprised 10–30% of the flora. Many species in most communities had diaspores with no special morphological device for dispersal. Physiognomically similar vegetation types indifferentbiogeographic regions usually had somewhat dissimilar dispersal spectra. The frequency of dispersal by vertebrates often increased and the frequency of species with no special dispersal device decreased along gradients of increasing vertical diversity of vegetation structure. Elevation and moisture gradients also exhibited shifts in dispersal spectra. Within Australia, vertebrate- and wind-dispersal increased in frequency along a soil-fertility gradient, and dispersal by ants and by no special device decreased. Habitat breadths (across plant communities) and microhabitat breadths (within communities) for species of each major dispersal type did not show consistent differences, in general. Ant-dispersed species often had lower cover-values than other species in several Australian vegetation types. We discuss the ecological bases of these differences in dispersal spectra in terms of the availability of dispersal agents, seed size, and other ecological constraints. Seed size is suggested to be one ecological factor that is probably of general relevance to the evolution of dispersal syndromes.  相似文献   

13.
持久土壤种子库研究综述   总被引:24,自引:3,他引:24  
土壤种子库是指存在于土壤上层凋落物和土壤中全部存活种子,简单地可分为短暂土壤种子库和持久土壤种子库。即使给予理想的萌发条件如季节、温度、湿度等,土壤种子库中也仍有部分种子保持休眠状态,休眠的种子组成了持久土壤种子库。持久土壤种子库具有在承受了空间或时间上不可预测的干扰的植被中发挥繁殖能力的潜势,因此,其在植被承受干扰后的恢复、管理和重建中常常起关键作用。研究持久土壤种子库能丰富生物多样性的内容,同时,可以为深入了解植被更新提供更多的信息。本文从持久土壤种子库的研究方法、分类方法、指示因子、生态意义,以及持久土壤种子库研究中存在的问题和今后的工作进行综述,试图为将来的工作奠定基础。  相似文献   

14.
Seed dispersal determines a plant’s reproductive success, range expansion, and population genetic structures. Camellia japonica, a common evergreen tree in Japan, has been the subject of recent genetic studies of population structure, but its mode of seed dispersal has been assumed, without detailed study, to be barochory. The morphological and physiological features of C. japonica seeds, which are large and nutritious, suggest zoochorous dispersal, however. We compared actual distances between mother trees and seedlings with distances attributable to gravity dispersion only, to test the zoochory hypothesis of C. japonica. The animals that transport the seeds for caching were identified experimentally. We also examined the extent to which seed dispersal is affected by the behavior of animal vectors. Seed dispersal by Apodemus speciosus was confirmed by taking photographs of animals that were consuming seeds experimentally deposited on the ground. Camellia seeds hoarded by the rodents under the litter or soil were protected from drying. On the basis of microsatellite analysis of maternal tissue from the seed coat, the mother trees of 28 seedlings were identified. Maternity analysis revealed the average seed-dispersal distance from mother trees was 5.8 m±6.0 SD, a distance greater than initial dispersal by gravity alone. These results indicate that C. japonica is a zoochorous species dispersed by A. speciosus. Fifty percent of the seed dispersal occurred from mature evergreen forests to dwarf bamboo thickets. This directional seed dispersal would contribute to range expansion of C. japonica. Home range sizes of A. speciosus were 0.85 ha at most and covered with different types of vegetation, from evergreen forests to grassland. This low specificity of their microhabitat use might enhance seed dispersal to different types of vegetation.All animal experiments complied with Japanese laws.  相似文献   

15.
土壤种子库的研究进展及若干研究热点   总被引:96,自引:2,他引:96       下载免费PDF全文
 土壤种子库是指存在于表层土壤(包括凋落物)中的有生命的种子。土壤种子库的研究已是植物生态学研究不可缺少的一部分,现已成为植物种群生态学中比较活跃的领域。土壤种子库时期是植物种群生活史的一个重要阶段,有人称之为潜种群阶段。土壤种子库对一年生植物来说尤其重要。土壤种子库简单地可分为瞬时土壤种子库和长久土壤种子库,即使给予理想的萌发条件如季节、温度、湿度等,土壤种子库中也仍有部分种子保持休眠状态,休眠的种子组成了土壤长久种子库的成分。时空异质性是土壤种子库的基本特性之一,不仅不同植被类型的土壤种子库具有不同的组成、大小和多样性,而且微环境也影响土壤种子库的分布格局。由于萌发、捕食和衰老等原因,土壤种子库具有季节动态,一般在旧种子萌发之后,新种子散布之前达到最低点。在高等植物占据的大多数生境中,以休眠繁殖体形式存在的个体远远超过地上植株的数量;土壤种子库、幼苗库和成年植被相互联系相互影响。由于各种原因如群落类型的差异、群落的演替阶段、取样的时间等,地上植被和土壤种子库之间关系大体上可分为两种情况,即相似性和差异性;研究土壤种子库的方法通常有萌发法和物理分离法。土壤种子库能部分反应群落的历史,对退化生态系统的恢复起着重要的作用。目前土壤种子库的主要研究热点问题可分为以下几个方面:1)土壤种子库的研究方法,2)土壤种子库的分类问题,3)土壤种子库分布的时空格局,4)地上植被和土壤种子库的关系,5)土壤种子库的动态等。  相似文献   

16.
The importance of neighboring vegetation as a seed reservoir for spontaneous colonization of adjacent road slopes was analyzed in a semiarid region of east Spain. Two independent methodological approaches were used to examine the relative contribution of seed from neighboring vegetation and the efficiency of different seed dispersal strategies in plant colonization. We first used a randomization test to compare floristic similarity between road slopes, neighboring flora, and local flora (the regional species pool found in the same climate and soil conditions as the road slopes). Second, we compared seed dispersal mechanisms of road slope vegetation with those of the surrounding area using frequency analysis. Species composition of road slopes was more similar to that of the flora of adjacent surrounding areas than expected by chance. Anemochorous (wind‐dispersed) plants were over‐represented in road slopes 8 years after road slopes were built. We concluded that seed dispersal from neighboring vegetation is an important factor in the vegetative colonization of road slopes. However, this initial species pool was also strongly shaped by the harsh environmental conditions of roadcuts and southern aspect. These results have important implications in road slope restoration because they suggest that naturally vegetated areas should be maintained adjacent to road slopes to enhance seed immigration from species adapted to local site conditions, which will accelerate the successional process. The application of this single reclamation strategy and mixed strategies that combine the use of natural colonization and soil amendment for road slope restoration in Mediterranean environmental conditions is discussed.  相似文献   

17.
Seed bank assembly follows vegetation succession in dune slacks   总被引:1,自引:0,他引:1  
Question: Is the seed bank in dune slacks during the whole successional range mainly composed of early successional species or does it vary according to the changing vegetation? Location: Belgium, western part of the coast. Methods: We investigated the soil seed bank composition using a seedling germination method in a chronosequence of 20 dune slacks, ranging in age from five to 55 yr. Results: Both seed density and species richness in the seed bank were very low in the first successional stages and increased with age, mainly as a result of increasing seed production. The similarity between seed bank and vegetation was higher in older slacks. A comparison of characteristics between seed bank and vegetation showed that the seed bank was, to a large extent, composed of later successional species. Occurrence patterns of individual species also showed that seeds become incorporated in the soil after the species has established in the vegetation. Conclusion: The seed bank is not likely to be the driving force for successional changes in the vegetation, and successional changes rely on dispersal. Some early successional species persist in the seed bank, but generally only in low numbers. The results also confirm that most typical dune slack species do not form persistent seeds, so that re‐establishment from the seed bank is not to be expected when the species has disappeared from the vegetation.  相似文献   

18.
Question: Are there changes in dispersal patterns in floodplain pioneer vegetation with effects on seedling number, species richness and species composition along a gradient of declining river‐floodplain connectivity? Location: Middle Elbe river floodplain, Germany. Methods: An experiment with five treatments was set up along a gradient of declining river‐floodplain connectivity, partitioning seedlings into three groups: (1) emerging solely from water dispersed seeds, (2) from wind/animal dispersed seeds and (3) from the soil diaspore bank. Two controls were established: without any manipulation and exclusion of all seeds. The results were compared with those of vegetation and soil sampling to evaluate the representativeness of the experimental sites in terms of species composition, diversity, seedling number and soil parameters. Results: Water dispersal and the soil diaspore bank were the major dispersal strategies shaping floodplain pioneer vegetation at the Middle Elbe river. The number of seedlings, species richness and the variation in species composition in these habitats depend on the degree of connectivity. The seedling number and species richness is highest in sites of permanent or almost permanent exchange with the main channel, where water dispersal additionally contributes to the number of seedlings grown from the soil seed bank. Conclusion: The results underline the importance of river‐floodplain ecotones as sink habitats for water‐dispersed seeds. Considering the strongly reduced river‐floodplain interactions due to dykes and other engineering structures, management strategies are necessary to improve connectivity and the renewal of fluvial land forms.  相似文献   

19.
Gaps in grassland created by animals are often sites for species regeneration. The persistent seed banks of ant-hills and surrounding soils in a calcareous grassland in southern Britain were compared and analysed in terms of seed mass and longevity. The relative abundance of species on ant-hills compared to the pasture was highly correlated with seed abundance in ant-hill soil. The abundance of plant species on ant-hills compared to the pasture was significantly negatively correlated with seed mass, and positively correlated with seed longevity. These results suggest that germination from the seed bank in ant-hill soils, as well as limited seed dispersal and vegetative invasion, contributes to the distinctive ant-hill vegetation. The same may apply to other gaps created by animals in grasslands.  相似文献   

20.
种子重量的生态学研究进展   总被引:10,自引:4,他引:10       下载免费PDF全文
作为植物生活史中的一个关键性特征,种子重量与其它许多植物性状和生态因子有关,种子重量的分异与其它一些植物性状及环境的变化关系在进化生物学上已经成为一个非常有意义的研究内容,且具有一定的实践意义。种子重量被发现与下列的一些植物学和群落学性状有关:植物的生活型、种子的散布能力、种子的散布方式、植物的高度、植物的冠幅、植物的比叶面积、植物的寿命、动物的捕食、植被中植物的数量或多度、土壤中种子的数量或多度、种子的休眠、种子在土壤中的持久性和植物的净初级生产力等,另外生态因子如降雨、温度、坡向、海拔、经度、纬度、光强和干扰等都影响种子的重量。种子的重量被认为是在大量小种子和少量大种子之间的进化折衷,在一定的能量限度内,较大重量的种子一般具有较少的数量,而较小重量的种子一般数量较多,这是种子重量和数量方面具有的一种反向关系。与其它性状相比,很多研究都表明种子重量和植物的生活型的关系密切。没有散布结构或风散布的种子比以动物和水作为散布媒介的种子重量要小。种子重量与捕食的关系现发现有3种格局。种子重量和形状与种子在土壤中的持久性的关系有4种格局。在干旱和阴暗的环境条件下,种子有变大的趋势。大重量种子比小种子赋予幼苗较优势的竞争地位,其原理尚有争论,尚不清楚是否是幼苗阶段的竞争决定了世界上大部分植被类型的物种组成。未来的研究方向主要有以下几个方面:1) 种子重量与植物系统学相结合,探索种子重量的变化规律;2)调查群落三向(纬度、经度和海拔)性的种子重量谱变化规律;3) 群落演替与群落种子重量谱的变化;4) 种子重量与群落中植物个体和种子的数量的关系及机理研究;5) 微生境、微地形如坡向、坡位和林间隙等对种子重量的影响;6) 全球气候变化和种子重量变化的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号