首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat dextrin soluble fibre may have metabolic and health benefits, potentially acting via mechanisms governed by the selective modulation of the human gut microbiota. Our aim was to examine the impact of wheat dextrin on the composition and metabolic activity of the gut microbiota. We used a validated in vitro three-stage continuous culture human colonic model (gut model) system comprised of vessels simulating anatomical regions of the human colon. To mimic human ingestion, 7 g of wheat dextrin (NUTRIOSE® FB06) was administered to three gut models, twice daily at 10.00 and 15.00, for a total of 18 days. Samples were collected and analysed for microbial composition and organic acid concentrations by 16S rRNA-based fluorescence in situ hybridisation and gas chromatography approaches, respectively. Wheat dextrin mediated a significant increase in total bacteria in vessels simulating the transverse and distal colon, and a significant increase in key butyrate-producing bacteria Clostridium cluster XIVa and Roseburia genus in all vessels of the gut model. The production of principal short-chain fatty acids, acetate, propionate and butyrate, which have been purported to have protective, trophic and metabolic host benefits, were increased. Specifically, wheat dextrin fermentation had a significant butyrogenic effect in all vessels of the gut model and significantly increased production of acetate (vessels 2 and 3) and propionate (vessel 3), simulating the transverse and distal regions of the human colon, respectively. In conclusion, wheat dextrin NUTRIOSE® FB06 is selectively fermented in vitro by Clostridium cluster XIVa and Roseburia genus and beneficially alters the metabolic profile of the human gut microbiota.  相似文献   

2.
Benefits of polyphenols on gut microbiota and implications in human health   总被引:2,自引:0,他引:2  
The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship “polyphenols ? microbiota” are still poorly understood.Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health.  相似文献   

3.
The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.  相似文献   

4.
Anorexia nervosa (AN) is a psychological illness with devastating physical consequences; however, its pathophysiological mechanism remains unclear. Because numerous reports have indicated the importance of gut microbiota in the regulation of weight gain, it is reasonable to speculate that AN patients might have a microbial imbalance, i.e. dysbiosis, in their gut. In this study, we compared the fecal microbiota of female patients with AN (n = 25), including restrictive (ANR, n = 14) and binge-eating (ANBP, n = 11) subtypes, with those of age-matched healthy female controls (n = 21) using the Yakult Intestinal Flora-SCAN based on 16S or 23S rRNA–targeted RT–quantitative PCR technology. AN patients had significantly lower amounts of total bacteria and obligate anaerobes including those from the Clostridium coccoides group, Clostridium leptum subgroup, and Bacteroides fragilis group than the age-matched healthy women. Lower numbers of Streptococcus were also found in the AN group than in the control group. In the analysis based on AN subtypes, the counts of the Bacteroides fragilis group in the ANR and ANBP groups and the counts of the Clostridium coccoides group in the ANR group were significantly lower than those in the control group. The detection rate of the Lactobacillus plantarum subgroup was significantly lower in the AN group than in the control group. The AN group had significantly lower acetic and propionic acid concentrations in the feces than the control group. Moreover, the subtype analysis showed that the fecal concentrations of acetic acid were lower in the ANR group than in the control group. Principal component analysis confirmed a clear difference in the bacterial components between the AN patients and healthy women. Collectively, these results clearly indicate the existence of dysbiosis in the gut of AN patients.  相似文献   

5.
BackgroundTotal glucosides of peony (TGP), extracted from the root and rhizome of Paeonia lactiflora Pall, has well-confirmed immunomodulatory efficacy in the clinic. However, the mechanism and active ingredients remain largely unclear.Hypothesis/PurposeOur previous study revealed a low systemic exposure but predominant gut distribution of TGP components. The aim of this study was to investigate involvement of the gut microbiota in the immunoregulatory effects and identify the active component.MethodsMice received 3% DSS to establish a model of colitis. The treatment group received TGP or single paeoniflorin (PF) or albiflorin (AF). Body weight, colon length, inflammatory and histological changes were assessed. Gut microbiota structure was profiled by 16s rRNA sequencing. Antibiotic treatment and fecal transplantation were used to explore the involvement of gut microbiota. Metabolomic assay of host and microbial metabolites in colon was performed.ResultsTGP improved colonic injury and gut microbial dysbiosis in colitis mice, and PF was responsible for the protective effects. Fecal microbiota transfer from TGP-treated mice conferred resilience to colitis, while antibiotic treatment abrogated the protective effects. Both TGP and PF decreased colonic indole-3-lactate (ILA), a microbial tryptophan metabolite. ILA was further identified as an inhibitor of epithelial autophagy and ILA supplementation compromised the benefits of TGP.ConclusionOur findings suggest that TGP acts in part through a gut microbiota-ILA-epithelial autophagy axis to alleviate colitis.  相似文献   

6.
The present study was aimed to investigate the nutritive profiles, microbial counts and fermentation metabolites in rye, Italian rye-grass (IRG) and barley supplemented with Lactobacillus plantarum under the field condition, and its probiotic properties. After preparation of silage, the content of crude protein (CP), crude ash, acid detergent fiber (ADF), and neutral detergent fiber (NDF), microbes such as lactic acid bacteria (LAB), yeast and fungi counts, and fermentation metabolites lactic acid, acetic acid and butyric acid was assessed. Results indicated that the content of ADF and NDF were significantly varied between rye, IRG and barley mediated silages. The content of CP was increased in L. plantarum supplemented with IRG, but slightly decreased in rye and barley mediated silages. The maximum LAB count was recorded at 53.10 × 107 cfu/g in rye, 16.18 × 107 cfu/g in IRG and 2.63 × 107 cfu/g in barley silages respectively. A considerable number of the yeasts were observed in the IRG silages than the rye silages (P < 0.05). The amount of lactic acid production is higher in L. plantarum supplemented silages as compared with control samples (P < 0.05). It was confirmed that higher amount of lactic acid produced only due to more number of LAB found in the silages. L. plantarum was able to survive at low pH and bile salt and the duodenum passage with the highest percentage of hydrophobicity. Furthermore, the strain was sensitive towards the antibiotics commonly used to maintain the microbes in food industrial setups. In conclusion, supplementation of L. plantarum is most beneficial in rye, IRG and barley silage preparations and probiotic characteristics of L. plantarum was an intrinsic feature for the application in the preparation of animal feeds and functional foods.  相似文献   

7.
Lactic acid bacteria (LAB) are generally accepted as beneficial to the host and their presence is directly influenced by ingestion of fermented food or probiotics. While the intestinal lactic microbiota is well-described knowledge on its routes of inoculation and competitiveness towards selective pressure shaping the intestinal microbiota is limited. In this study, LAB were isolated from faecal samples of breast feeding mothers living in Syria, from faeces of their infants, from breast milk as well as from fermented food, typically consumed in Syria. A total of 700 isolates were characterized by genetic fingerprinting with random amplified polymorphic DNA (RAPD) and identified by comparative 16S rDNA sequencing and Matrix Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analyses. Thirty six different species of Lactobacillus, Enterococcus, Streptococcus, Weissella and Pediococcus were identified. RAPD and MALDI-TOF-MS patterns allowed comparison of the lactic microbiota on species and strain level. Whereas some species were unique for one source, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Lactobacillus brevis were found in all sources. Interestingly, identical RAPD genotypes of L. plantarum, L. fermentum, L. brevis, Enterococcus faecium, Enterococcus faecalis and P. pentosaceus were found in the faeces of mothers, her milk and in faeces of her babies. Diversity of RAPD types found in food versus human samples suggests the importance of host factors in colonization and individual host specificity, and support the hypothesis that there is a vertical transfer of intestinal LAB from the mother's gut to her milk and through the milk to the infant's gut.  相似文献   

8.
Links between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO) mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac+), with metabolic improvement achieved in DIO mice in receipt of vancomycin. However, two phases of weight gain were observed with effects most marked early in the intervention phase. Here, we compare the gut microbial populations at the early relative to the late stages of intervention using a high throughput sequencing-based analysis to understand the temporal relationship between the gut microbiota and obesity. This reveals several differences in microbiota composition over the intervening period. Vancomycin dramatically altered the gut microbiota composition, relative to controls, at the early stages of intervention after which time some recovery was evident. It was also revealed that Bac+ treatment initially resulted in the presence of significantly higher proportions of Peptococcaceae and significantly lower proportions of Rikenellaceae and Porphyromonadaceae relative to the gut microbiota of L. salivarius UCC118 bacteriocin negative (Bac-) administered controls. These differences were no longer evident at the later time. The results highlight the resilience of the gut microbiota and suggest that interventions may need to be monitored and continually adjusted to ensure sustained modification of the gut microbiota.  相似文献   

9.
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.  相似文献   

10.
An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.  相似文献   

11.
12.
Lactobacillus plantarum has been used in human clinical trials to promote beneficial effects in the immune system, to alleviate intestinal disorders, and to reduce the risk of cardiovascular disease. It is also involved in many fermentation processes in the food industry. However, information on the fate of ingested L. plantarum is limited. In this study, 61 subjects received daily doses of fermented milk containing 2 × 1011 cells of L. plantarum Lp115 for different periods of time. The target microorganism was monitored in the fecal microbiota via quantitative PCR (qPCR). L. plantarum was detected and quantified in all of the subjects during the ingestion periods. The differences between the L. plantarum levels at time zero and during all the different ingestion periods were statistically significant (P = 0.001). However, at 15 and 45 days after discontinuing supplementation, the number of lactobacilli was reduced to the baseline level (those at time zero). A longer period with L. plantarum in the diet did not result in increased levels of this bacterium in the stool, based on postconsumption evaluations (P = 0.001). The qPCR method was specific and sensitive for L. plantarum quantification in such a complex microbial environment as the gastrointestinal tract.  相似文献   

13.
We reported earlier that Pediococcus cerevisiae FBB-61 inhibited Lactobacillus plantarum FBB-67 in mixed species inoculation used for the fermentation of brined cucumbers. Herein, 16 isolates of the Pediococcus genus from various sources were tested for inhibitory activity against L. plantarum and other microorganisms by a seeded-agar screening technique. Only two of the 16 isolates gave consistent and distinctive zones of inhibition, and both were isolated from fermenting cucumber brines on separate occasions. These two isolates did not inhibit each other but did inhibit the other 14 Pediococcus isolates in addition to L. plantarum. They also inhibited several other gram-positive bacteria, but not four species each of gram-negative bacteria and yeasts tested. Inoculation of cucumber juice broth with P. cerevisiae FBB-61 and L. plantarum WSO resulted in a drastic reduction in the plate count of L. plantarum WSO during day 1, but counts increased rapidly thereafter. Consequently, acid production by L. plantarum WSO was delayed. Noninhibitory isolates of Pediococcus had no appreciable effect on growth and acid production by L. plantarum WSO.  相似文献   

14.
Lactobacillus plantarum is a non-gas-producing lactic acid bacterium that is generally regarded as safe (GRAS) with Qualified Presumption of Safety (QPS) status. Although traditionally used for dairy, meat and vegetable fermentation, L. plantarum is gaining increasing significance as a probiotic. With the newly acclaimed gut-heart-brain axis, strains of L. plantarum have proven to be a valuable species for the development of probiotics, with various beneficial effects on gut health, metabolic disorders and brain health. In this review, the classification and taxonomy, and the relation of these with safety aspects are introduced. Characteristics of L. plantarum to fulfill the criteria as a probiotic are discussed. Emphasis are also given to the beneficial functions of L. plantarum in gut disorders such as inflammatory bowel diseases, metabolic syndromes, dyslipidemia, hypercholesteromia, obesity, and diabetes, and brain health aspects involving psychological disorders.  相似文献   

15.
Although blattid cockroaches and termites share a common ancestor, their diets are distinctly different. While termites consume a highly specialized diet of lignocellulose, cockroaches are omnivorous and opportunistic feeders. The role of the termite gut microbiota has been studied intensively, but little is known about the cockroach gut microbiota and its function in digestion and nutrition, particularly the adaptation to different diets. Our analyses of the bacterial gut microbiota of the blattid cockroach Shelfordella lateralis combining terminal restriction fragment length polymorphism of their 16S rRNA genes with physiological parameters (microbial metabolites, hydrogen and methane emission) indicated substantial variation between individuals but failed to identify any diet-related response. Subsequent deep-sequencing of the 16S rRNA genes of the colonic gut microbiota of S. lateralis fed either a high- or a low-fiber diet confirmed the absence of bacterial taxa that responded to diet. Instead, we found a small number of abundant phylotypes that were consistently present in all samples and made up half of the community in both diet groups. They varied strongly in abundance between individual samples at the genus but not at the family level. The remaining phylotypes were inconsistently present among replicate batches. Our findings suggest that S. lateralis harbors a highly dynamic core gut microbiota that is maintained even after fundamental dietary shifts, and that any dietary effects on the gut community are likely to be masked by strong individual variations.  相似文献   

16.
In this study, twenty Lactobacillus plantarum strains which were isolated from the fecal samples of humans were investigated in vitro for their characteristics as potential new probiotic strains. The L. plantarum strains were examined for resistance to gastric acidity in simulated gastric juice at pH 2.0, 2.5, 3.0, and 3.5. The growth of test cultures with different pH was monitored after 0, 10, 30, 60, 90, and 120 min of incubation using a spectrophotometer at 550 nm. At the same time, samples were serially diluted in sterile PBS, and counts of viable bacteria were determined by plate counts using MRS agar for each pH and time parameter. The strains were also examined for resistance to 0.4% phenol, production of H2O2, adhesion to Caco-2 cell line and antimicrobial activity. It was determined that the artificial gastric juice, even at pH 2.0, did not significantly change the viability of the cultures. Except L. plantarum AA1-2, all strains were detected at 8 ~ 9 log10 CFU/g. It was found that all L. plantarum strains showed good resistance to 0.4% phenol, and only one strain (AC18-82) produced H2O2. Good adhesion of L. plantarum strains to Caco-2 cells was observed in this experiment. These selected strains also showed antimicrobial activity.  相似文献   

17.
Dysregulation of the gut microbiota/gut hormone axis contributes to the pathogenesis of irritable bowel syndrome (IBS). Melatonin plays a beneficial role in gut motility and immunity. However, altered expression of local mucosal melatonin in IBS and its relationship with the gut microbiota remain unclear. Therefore, we aimed to detect the colonic melatonin levels and microbiota profiles in patients with diarrhea-predominant IBS (IBS-D) and explore their relationship in germ-free (GF) rats and BON-1 cells. Thirty-two IBS-D patients and twenty-eight healthy controls (HCs) were recruited. Fecal specimens from IBS-D patients and HCs were separately transplanted into GF rats by gavage. The levels of colon mucosal melatonin were assessed by immunohistochemical methods, and fecal microbiota communities were analyzed using 16S rDNA sequencing. The effect of butyrate on melatonin synthesis in BON-1 cells was evaluated by ELISA. Melatonin levels were significantly increased and negatively correlated with visceral hypersensitivity in IBS-D patients. GF rats inoculated with fecal microbiota from IBS-D patients had high colonic melatonin levels. Butyrate-producing Clostridium cluster XIVa species, such as Roseburia species and Lachnospira species, were positively related to colonic mucosal melatonin expression. Butyrate significantly increased melatonin secretion in BON-1 cells. Increased melatonin expression may be an adaptive protective mechanism in the development of IBS-D. Moreover, some Clostridium cluster XIVa species could increase melatonin expression via butyrate production. Modulation of the gut hormone/gut microbiota axis offers a promising target of interest for IBS in the future.  相似文献   

18.
Cachexia is associated with decreased survival in cancer patients and has a prevalence of up to 80%. The etiology of cachexia is poorly understood, and limited treatment options exist. Here, we investigated the role of the human gut microbiome in cachexia by integrating shotgun metagenomics and plasma metabolomics of 31 lung cancer patients. The cachexia group showed significant differences in the gut microbial composition, functional pathways of the metagenome, and the related plasma metabolites compared to non-cachectic patients. Branched-chain amino acids (BCAAs), methylhistamine, and vitamins were significantly depleted in the plasma of cachexia patients, which was also reflected in the depletion of relevant gut microbiota functional pathways. The enrichment of BCAAs and 3-oxocholic acid in non-cachectic patients were positively correlated with gut microbial species Prevotella copri and Lactobacillus gasseri, respectively. Furthermore, the gut microbiota capacity for lipopolysaccharides biosynthesis was significantly enriched in cachectic patients. The involvement of the gut microbiome in cachexia was further observed in a high-performance machine learning model using solely gut microbial features. Our study demonstrates the links between cachectic host metabolism and specific gut microbial species and functions in a clinical setting, suggesting that the gut microbiota could have an influence on cachexia with possible therapeutic applications.Subject terms: Microbiome, Metagenomics, Next-generation sequencing, Metabolomics  相似文献   

19.
In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor’s fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.  相似文献   

20.
Lactobacillus plantarum BW2013 was isolated from the fermented Chinese cabbage. This study aimed to test the effect of this strain on the gut microbiota in BALB/c mice by 16S rRNA amplicon sequencing. The mice were randomly allocated to the control group and three treatment groups of L. plantarum BW2013 (a low-dose group of 108 CFU/ml, a medium-dose group of 109 CFU/ml, and a high-dose group of 1010 CFU/ml). The weight of mice was recorded once a week, and the fecal samples were collected for 16S rRNA amplicon sequencing after 28 days of continuous treatment. Compared with the control group, the body weight gain in the treatment groups was not significant. The 16S rRNA amplicon sequencing analysis showed that both the Chao1 and ACE indexes increased slightly in the medium-dose group compared to the control group, but the difference was not significant. Based on PCoA results, there was no significant difference in β diversity between the treatment groups. Compared to the control group, the abundance of Bacteroidetes increased in the low-dose group. The abundance of Firmicutes increased in the medium-dose group. At the genus level, the abundance of Alloprevotella increased in the low-dose group compared to the control group. The increased abundance of Ruminococcaceae and decreased abundance of Candidatus_Saccharimonas was observed in the medium-dose group. Additionally, the abundance of Bacteroides increased, and Alistipes and Candidatus_Saccharimonas decreased in the high-dose group. These results indicated that L. plantarum BW2013 could ameliorate gut microbiota composition, but its effects vary with the dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号