首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, recalcitrance of tea plant ( Camellia sinensis) to Agrobacterium-mediated genetic transformation was investigated with an emphasis on specialized compounds in tea. Chemical constituents in tea leaves and calli were extracted into liquid Luria–Bertani (LB) medium to determine their biological activities on Agrobacterium growth, virulence, and plant transformation efficiency. Compared to the control Agrobacterium grown in LB medium, tea leaf extract containing 6.5 mg mL?1 catechins resulted in an 84.6 % reduction of Agrobacterium growth, a 73–36 % suppression of expression for the six virulence (vir) genes, browning of infected tobacco explant wounds, and an absence of transient or stable transformation events. Tea callus extract, containing 0.22 mg mL?1 catechins, did not significantly affect Agrobacterium growth or tobacco transgenic hairy root generation, whereas it enhanced the expression of some vir genes. Treatment with authentic catechin mixtures (other than caffeine) dissolved in LB resulted in suppression of Agrobacterium growth, vir gene expression, and tobacco transformation efficiency. Our data suggest that catechins are the key active constituents in tea leaves. Transient transformation efficiencies of tea leaves were much lower than those of tobacco leaves as indicated by the GUS (β-glucuronidase) assay, probably a result of inhibition by the catechins present in tea leaves. Lower transformation efficiencies of tea calli suggested that additional plant factor(s) might also exert inhibitory effects on tea plant transformation. Agrobacterium rhizogenes ATCC 15834 induced transgenic roots from the tea explants with 15–20 % efficiency. Our data suggested catechins inhibition of tea gene transformation could be overcome by using optimized strains of Agrobacterium.  相似文献   

2.
The expression of recombinant proteins of pharmaceutical interest in the milk of transgenic farm animals can result in phenotypes exhibiting compromised lactation performance, as a result of the extraordinary demand placed on the mammary gland. In this study, we investigated differences in the protein composition of milk from control and transgenic goats expressing recombinant human butyrylcholinesterase. In Experiment 1, the milk was characterized by gel electrophoresis and liquid chromatography/mass spectrometry in order to identify protein bands that were uniquely visible in the transgenic milk and/or at differing band densities compared with controls. Differences in protein content were additionally evaluated by computer assisted band densitometry. Proteins identified in the transgenic milk only included serum proteins (i.e. complement component 3b, ceruloplasmin), a cytoskeleton protein (i.e. actin) and a stress-induced protein (94 kDA glucose-regulated protein). Proteins exhibiting evident differences in band density between the transgenic and control groups included immunoglobulins, serum albumin, β-lactoglobulin and α-lactalbumin. These results were found to be indicative of compromised epithelial tight junctions, premature mammary cell death, and protein synthesis stress resulting from transgene expression. In Experiment 2, the concentration of α-lactalbumin was determined using the IDRing® assay and was found to be significantly reduced on day 1 of lactation in transgenic goats (4.33 ± 0.97 vs. 2.24 ± 0.25 mg/ml, P < 0.01), but was not different from non-transgenic controls by day 30 (0.99 ± 0.46 vs. 0.90 ± 0.11 mg/ml, P > 0.05). We concluded that a decreased/delayed expression of the α-lactalbumin gene may be the cause for the delayed start of milk production observed in this herd of transgenic goats.  相似文献   

3.
4.
5.
Reverse-mode activation of the Na+/Ca2+ exchanger (NCX) during reperfusion following ischemia contributes to Ca2+ overload and cardiomyocyte injury. KB-R7943, a selective reverse-mode NCX inhibitor, reduces lethal reperfusion injury under non-ischemic conditions. However, the effectiveness of this compound under ischemic conditions is unclear. In the present study, we studied the effects of KB-R7943 in an animal model of hyperlipidemia. We further assessed whether the K ATP + channels are involved in potential protective mechanisms of KB-R7943. Twelve rats were fed normal chow, while 48 animals were fed a high cholesterol diet. The hearts from the control and hypercholesterolemic rats were subjected to 25 min of global ischemia followed by a 120-min reperfusion. Before this, hearts from hypercholesterolemic rats either received no intervention (cholesterol control group) or were pre-treated with 1 μM KB-R7943 and 0.3 μM of K ATP + blocker glibenclamide or glibenclamide alone. The infarction sizes (triphenyltetrazolium assay) were 35 ± 5.0 % in the control group, 46 ± 8.7 % in the cholesterol control group (p < 0.05 vs. control group), 28.6 ± 3.3 % in the KB-R7943 group (p < 0.05 vs. cholesterol control group), 44 ± 5 % in the KB-R7943 and glibenclamide group, and 47 ± 8.5 % in the glibenclamide group (p < 0.05 vs. control group). Further, KB-R7943 attenuated the magnitude of cell apoptosis (p < 0.05 vs. cholesterol control group). These beneficial effects were abolished by glibenclamide. In conclusion, diet-induced hypercholesterolemia enhances myocardial injury. Selective reverse-mode NCX inhibitor KB-R7943 reduces the infarction size and apoptosis in hyperlipidemic animals through the activation of K ATP + channels.  相似文献   

6.
7.
Generation of transgenic pigs for xenotransplantation is one of the most promising technologies for resolving organ shortages. Human heme oxygenase-1 (hHO-1/HMOX1) can protect transplanted organs by its strong anti-oxidative, anti-apoptotic, and anti-inflammatory effects. Soluble human TNFRI-Fc (shTNFRI-Fc) can inhibit the binding of human TNF-α (hTNF-α) to TNF receptors on porcine cells, and thereby, prevent hTNF-α-mediated inflammation and apoptosis. Herein, we successfully generated shTNFRI-Fc-F2A-HA-hHO-1 transgenic (TG) pigs expressing both shTNFRI-Fc and hemagglutinin-tagged-human heme oxygenase-1 (HA-hHO-1) by using an F2A self-cleaving peptide. shTNFRI-Fc and HA-hHO-1 transgenes containing the F2A peptide were constructed under the control of the CAG promoter. Transgene insertion and copy number in the genome of transgenic pigs was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Expressions of shTNFRI-Fc and HA-hHO-1 in TG pigs were confirmed using PCR, RT-PCR, western blot, ELISA, and immunohistochemistry. shTNFRI-Fc and HA-hHO-1 were expressed in various organs, including the heart, lung, and spleen. ELISA assays detected shTNFRI-Fc in the sera of TG pigs. For functional analysis, fibroblasts isolated from a shTNFRI-Fc-F2A-HA-hHO-1 TG pig (i.e., #14; 1 × 105 cells) were cultured with hTNF-α (20 ng/mL) and cycloheximide (10 μg/mL). The viability of shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was significantly higher than that of the wild type (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 24 h, 31.6 ± 3.2 vs. 60.4 ± 8.3 %, respectively; p < 0.05). Caspase-3/-7 activity of the shTNFRI-Fc-F2A-HA-hHO-1 TG pig fibroblasts was lower than that of the wild type pig fibroblasts (wild type vs. shTNFRI-Fc-F2A-HA-hHO-1 TG at 12 h, 812,452 ± 113,078 RLU vs. 88,240 ± 10,438 RLU, respectively; p < 0.05). These results show that shTNFRI-Fc and HA-hHO-1 TG pigs generated by the F2A self-cleaving peptide express both shTNFRI-Fc and HA-hHO-1 molecules, which provides protection against oxidative and inflammatory injury. Utilization of the F2A self-cleaving peptide is a promising tool for generating multiple TG pigs for xenotransplantation.  相似文献   

8.
The effects of feeding on root by the larvae and three types of Momordica cochinchinensis Spreng (Cucubitaceae) leaves (young, mature and senescent) by the adults of Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) were studied under laboratory conditions. Total larval developmental time was 19.7 ± 0.2 days by feeding on young roots. Adult males lived for 28.4 ± 1, 65.7 ± 1.1 and 22.8 ± 1.3 days on young, mature and senescent leaves, respectively; whilst adult females lived for 34.3 ± 1.2, 68.5 ± 0.9 and 26.4 ± 1.4 days on young, mature and senescent leaves, respectively. Fecundity was highest in mature leaves fed insects (202.2 ± 10.6). Total carbohydrate, protein, lipid, nitrogen and amino acid were much higher in root followed by mature leaves than young and senescent leaves. Moisture content was highest in mature leaves than the roots, young and senescent leaves. Phenols were greatest in young leaves followed by mature leaves and least in senescent leaves and roots of the said plant. Flavonols were higher in young leaves and least in root. These results suggest that A. foveicollis adults perform better on mature leaves than young and senescent leaves for their nutrition.  相似文献   

9.

Key message

Dammarenediol-II is biologically active tetracyclic triterpenoid, which is basic compound of ginsenoside saponin. Here, we established the dammarenediol-II production via a cell suspension culture of transgenic tobacco overexpressing PgDDS.

Abstract

Dammarenediol-II synthase catalyzes the cyclization of 2,3-oxidosqualene to dammarenediol-II, which is the basic triterpene skeleton in dammarene-type saponin (ginsenosides) in Panax ginseng. Dammarenediol-II is a useful candidate both for pharmacologically active triterpenes and as a defense compound in plants. Dammarenediol-II is present in the roots of P. ginseng in trace amounts because it is an intermediate product in triterpene biosynthesis. In this work, we established the production of dammarenediol-II via cell suspension culture of transgenic tobacco. The dammarenediol-II synthase gene (PgDDS) isolated from P. ginseng was introduced into the Nicotiana tobacum genome under the control of 35S promoter by Agrobacterium-mediated transformation. Accumulation of dammarenediol-II in transgenic tobacco plants occurred in an organ-specific manner (roots > stems > leaves > flower buds), and transgenic line 14 (T14) exhibited a high amount (157.8 μg g?1 DW) of dammarenediol-II in the roots. Dammarenediol-II production in transgenic tobacco plants resulted in reduced phytosterol (β-sitosterol, campesterol, and stigmasterol) contents. A cell suspension culture was established as a shake flask culture of a callus derived from root segments of transgenic (T14) plants. The amount of dammarenediol-II production in the cell suspension reached 573 μg g?1 dry weight after 3 weeks of culture, which is equivalent to a culture volume of 5.2 mg dammarenediol-II per liter. Conclusively, the production of dammarenediol-II in a cell suspension culture of transgenic tobacco can be applied to the large-scale production of this compound and utilized as a source of pharmacologically active medicinal materials.  相似文献   

10.
11.
12.
This study was conducted to investigate the possible correlation of chronic renal dysfunction and albuminuria with the severity of coronary artery lesions in patients with coronary artery disease (CAD). Two-hundred and ninety-nine patients who had undergone coronary angiography for suspected CAD were stratified into three groups according to the glomerular filtration rate (GFR): group I included 144 patients with normal renal function GFR >90 ml/(min × 1.73 m2), group II included 97 patients with mild renal impairment GFR 60–89 ml/(min × 1.73 m2), and group III included 58 patients with moderate renal impairment GFR <60 ml/(min × 1.73 m2). Patients were then stratified into two groups according to the albuminuria level (0; minimal, 1+, 2+, 3+): the albuminuria negative group (negative = 0) included 171 patients and the albuminuria positive group (positive = minimal, 1+, 2+, 3+) included 128 patients. Clinical features and coronary lesion characteristics were compared among these groups. Patients with more severe renal dysfunction and positive albuminuria had a higher incidence of CAD (66.7 vs. 70.1 vs. 72.4 %, p = 0.025 and 64.2 vs. 75.0 %, p = 0.032), more multi-vessel disease (31.2 vs. 41.2 vs. 53.4 %, p = 0.004 and 33.3 vs. 46.1 %, p = 0.015), more left anterior descending branch lesions (50.7 vs. 56.7 vs. 60.3 %, p = 0.012 and 49.1 vs. 61.7 %, p = 0.009), and a higher Gensini score (42.3 ± 14.7 vs. 46.1 ± 19.9 vs. 52.8 ± 21.2, p = 0.026 and 44.0 ± 16.0 vs. 50.5 ± 20.2, p = 0.017). In conclusion, chronic renal dysfunction and albuminuria may be important factors determining the occurrence and the severity of CAD. Albuminuria was an especially significant indicator at the early stage of renal dysfunction.  相似文献   

13.
Glutamate dehydrogenase (GDH) tends to have a lower affinity for ammonium than glutamine synthetase (GS) in higher plants. Consequently, nitrogen is mostly assimilated as ammonium by the GS/glutamate synthase pathway which requires 2-oxoglutarate (2-OG) as carbon skeletons. In contrast, the NADP(H)-dependent GDH in fungi has a higher affinity for ammonium than that in higher plants and plays a more significant part in ammonium assimilation. We isolated an NADP(H)-GDH gene (PcGDH) from the fungus Pleurotus cystidiosus and heterologously expressed it in rice (Oryza sativa L.). Alterations in nitrogen assimilation, growth, metabolism, and grain yield were observed in the transgenic plants. An investigation of the kinetic properties of the purified recombinant protein demonstrated that the amination activity (7.05 ± 0.78 μmoL min?1 mg soluble protein?1) of PcGDH was higher than the deamination activity (3.36 ± 0.42 μmoL min?1 mg soluble protein?1) and that the K m value for ammonium (K m = 3.73 ± 0.23 mM) was lower than that for the glutamate (K m = 15.97 ± 0.31 mM), indicating that the PcGDH tends to interconvert 2-OG and glutamate. Examination of the activity of NADP(H)-GDH in control and transgenic lines demonstrated that NADP(H)-GDH activity in the transgenic lines was markedly higher than that in the control lines; in particular, the amination activity was significantly higher than the deamination activity in shoots of the transgenic lines. The results of the hydroponics experiment revealed that shoot and root length, fresh weight, chlorophyll content, nitrogen content, and amino acid levels (glutamate, glutamine, and total amino acids) were elevated in transgenic lines in comparison with those of the control line under different nitrogen conditions at seedling stage. The 1,000-grain weight and the panicle number in transgenic lines were considerably augmented in the field condition, yet the filled grain rate dropped slightly and there was no apparent change in the grain yield. The levels of glutelin and prolamine in the transgenic seeds were considerably higher than those in control seeds. In conclusion, these results demonstrate that heterologous expression of P. cystidiosus GDH (PcGDH) could improve nitrogen assimilation and growth in rice.  相似文献   

14.
The aim of this study was to determine the effectiveness of a 7-day oral supplementation with branched-chain amino acids (BCAA) to prevent muscle damage during a marathon. Forty-six experienced runners were randomly divided into two groups, one with BCAA supplementation (n = 25, supplemented with 5 g day?1 of powdered 1:0.5:0.5 leucine:isoleucine:valine, during the 7 days prior to the competition) and the other as a control group (n = 21, supplemented with an isocaloric placebo). Before the marathon race and within 3 min of finishing, leg muscle power was measured with a maximal countermovement jump and a urine sample was obtained. During the race, running pace was measured by means of a time-chip. Myoglobin concentration was determined in the urine samples as an indirect marker of muscle damage. A visual analog scale (0–10 points) was used to assess leg muscle pain during the race. In the BCAA group, the mean running pace during the marathon was similar to the control group (3.3 ± 0.4 vs. 3.3 ± 0.5 m s?1, respectively, 0.98). The pre- to post-race reduction in muscle power was similar in both BCAA and control groups (?23.0 ± 16.1 vs. ?17.3 ± 13.8 %, P = 0.13). Post-race urine myoglobin concentration was similar in both BCAA and control groups (5.4 ± 7.5 vs. 4.5 ± 8.6 μg mL?1, P = 0.70). Finally, there were no differences between groups in the perceived muscle pain during the race (6 ± 1 vs. 5 ± 1 points, P = 0.80). A 7-day supplementation of BCAA (5 g day?1) did not increase the running performance during a marathon. Furthermore, BCAA supplementation was ineffective to prevent muscle power loss, muscle damage or perceived muscle pain during a marathon race.  相似文献   

15.
Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0 ± 1.43 (ST2) and 36.6 ± 0.99 (35S3) aphids per plant, which corresponds to 24.9–53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future.  相似文献   

16.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

17.

Key message

We report a novel approach for enhanced accumulation of fatty acids and triacylglycerols for utilization as biodiesel in transgenic tobacco stems through xylem-specific expression of Arabidopsis DGAT1 and LEC2 genes.

Abstract

The use of plant biomass for production of bioethanol and biodiesel has an enormous potential to revolutionize the global bioenergy outlook. Several studies have recently been initiated to genetically engineer oil production in seeds of crop plants to improve biodiesel production. However, the “food versus fuel” issues have also sparked some studies for enhanced accumulation of oils in vegetative tissues like leaves. But in the case of bioenergy crops, use of woody stems is more practical than leaves. Here, we report the enhanced accumulation of fatty acids (FAs) and triacylglycerols (TAGs) in stems of transgenic tobacco plants expressing Arabidopsis diacylglycerol acyltransferase 1 (DGAT1) and LEAFY COTYLEDON2 (LEC2) genes under a developing xylem-specific cellulose synthase promoter from aspen trees. The transgenic tobacco plants accumulated significantly higher amounts of FAs in their stems. On an average, DGAT1 and LEC2 overexpression showed a 63 and 80 % increase in total FA production in mature stems of transgenic plants over that of controls, respectively. In addition, selected DGAT1 and LEC2 overexpression lines showed enhanced levels of TAGs in stems with higher accumulation of 16:0, 18:2 and 18:3 TAGs. In LEC2 lines, the relative mRNA levels of the downstream genes encoding plastidic proteins involved in FA synthesis and accumulation were also elevated. Thus, here, we provide a proof of concept for our approach of enhancing total energy yield per plant through accumulation of higher levels of FAs in transgenic stems for biodiesel production.  相似文献   

18.

Key message

An efficient mannose selection system was established for transformation of Indica cultivar IR58025B . Different selection pressures were required to achieve optimum transformation frequency for different PMI selectable marker cassettes.

Abstract

This study was conducted to establish an efficient transformation system for Indica rice, cultivar IR58025B. Four combinations of two promoters, rice Actin 1 and maize Ubiquitin 1, and two manA genes, native gene from E. coli (PMI-01) and synthetic maize codon-optimized gene (PMI-09) were compared under various concentrations of mannose. Different selection pressures were required for different gene cassettes to achieve corresponding optimum transformation frequency (TF). Higher TFs as 54 and 53 % were obtained when 5 g/L mannose was used for selection of prActin-PMI-01 cassette and 7.5 g/L mannose used for selection of prActin-PMI-09, respectively. TFs as 67 and 56 % were obtained when 7.5 and 15 g/L mannose were used for selection of prUbi-PMI-01 and prUbi-PMI-09, respectively. We conclude that higher TFs can be achieved for different gene cassettes when an optimum selection pressure is applied. By investigating the PMI expression level in transgenic calli and leaves, we found there was a significant positive correlation between the protein expression level and the optimal selection pressure. Higher optimal selection pressure is required for those constructs which confer higher expression of PMI protein. The single copy rate of those transgenic events for prActin-PMI-01 cassette is lower than that for other three cassettes. We speculate some of low copy events with low protein expression levels might not have been able to survive in the mannose selection.  相似文献   

19.
The aim of the current study was to investigate how proinflammatory conditions affect growth and progression of hepatocellular carcinoma. Human hepatoma cell lines were treated with lipopolysaccharide (LPS) or cyclooxygenase-2 inhibitor, Celecoxib, and in vitro proliferation, apoptosis, and cell cycle progression were assessed. This was followed up with in vivo xenograft assays to monitor tumor growth and metastatic progression under different treatment conditions. While LPS induced cell proliferation, Celecoxib induced apoptosis. Flow cytometry analysis demonstrated that S-phase cell count in LPS group was higher than control group (41.9 ± 3.2 vs 30.6 ± 0.1 %, respectively), whereas G0/G1-phase cells were significantly higher in the Celecoxib group in comparison with the control group (69.6 ± 5.0 vs 50.4 ± 1.6 %, respectively) (p < 0.05). Immunoblot analyses showed induction of epidermal growth factor receptor expression and induction and nuclear accumulation of Wnt/β-catenin and p65 in LPS group. Xenograft assays showed that LPS treatment induced comparatively large, rapidly growing tumors (2,702 ± 572 mm3) that metastasized to lungs, whereas Celecoxib treatment alone (1,008 ± 296 mm3) or in combination with LPS (1,303 ± 283 mm3) suppressed tumor growth in comparison to control groups (2,072 ± 456 mm3) (n = 5; p < 0.05). Inflammation can thus promote hepatoma cell proliferation and growth, and enhance the invasion and metastatic ability of hepatocarcinoma cells through inducing tumor angiogenesis, which in turn may be related to the activation of Wnt/β-catenin and EGFR signaling pathways.  相似文献   

20.
Value-added abalone Haliotis discus hannai containing bioactive phlorotannins is produced by simply changing the feed to phlorotannin-rich brown seaweed Ecklonia cava 2 weeks prior to harvesting. We assessed the accumulation of phlorotannins by feeding with the seaweed after 4 days of starvation. Reverse-phase high-performance liquid chromatography afforded isolation of the major phlorotannins, which were identified by mass spectrometry and 1H-nuclear magnetic resonance to be 7-phloroeckol and eckol. Throughout the E. cava feeding period of 20 days, 7-phloroeckolol accumulated in the flesh (foot muscle tissue), up to 0.85?±?0.21 mg g?1 dry weight of tissue after 12 days. Eckol reached 0.31?±?0.08 mg g?1 dry tissue after 14 days. Feeding Laminaria japonica as a control, we detected no phlorotannins in the abalone muscle tissue. Abalone seaweed consumption and growth rate were similar when fed with E. cava or L. japonica for 20 days. Reduction in phlorotannins to half-maximal accumulation took 1.0 and 2.7 days for 7-phloroeckol and eckol, respectively, after replacement of the feed with L. japonica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号