首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral delivery of insulin to diabetic patients is highly desirable because it would be non-invasive and more closely mimic normal physiology, but this route of administration typically results in low bioavailability due to low pH and enzymatic degradation along the gastrointestinal tract. To explore an alternative approach that may mitigate these obstacles and also facilitate local synthesis of new therapeutic protein molecules in the small intestine, we engineered the food-grade bacterium Lactococcus lactis (NZ9000) for nisin-inducible expression and secretion of a bioactive single-chain insulin (SCI) analog, SCI-57. We show that the addition of nisin during early-log phase has a modest inhibitory effect on cell growth but induction during mid-log phase has a negligible impact on proliferation, suggesting a tradeoff between cell growth rate and duration of induction. We find that a signal peptide such as usp45 is necessary for secretion of SCI-57 into the medium; furthermore, we demonstrate that this secreted SCI-57 is biologically active, as assessed by the ability of conditioned L. lactis medium to stimulate Akt signaling in differentiated 3T3-L1 adipocytes. Finally, we show that the biological activity of SCI-57 was enhanced by near-neutral or slightly alkaline pH during induction, which is comparable to the pH in the small intestine, and by removal of a C-terminal purification tag. This study demonstrates that food-grade bacteria can be engineered to secrete bioactive insulin analogs and opens up the possibility of oral insulin delivery using live microorganisms.  相似文献   

2.
Cellular processes, such as the digestion of macromolecules, phosphate acquisition, and cell motility, require bacterial secretion systems. In Bacillus subtilis, the predominant protein export pathways are Sec (generalized secretory pathway) and Tat (twin-arginine translocase). Unlike Sec, which secretes unfolded proteins, the Tat machinery secretes fully folded proteins across the plasma membrane and into the medium. Proteins are directed for Tat-dependent export by N-terminal signal peptides that contain a conserved twin-arginine motif. Thus, utilizing the Tat secretion system by fusing a Tat signal peptide is an attractive strategy for the production and export of heterologous proteins. As a proof of concept, we expressed green fluorescent protein (GFP) fused to the PhoD Tat signal peptide in the laboratory and ancestral strains of B. subtilis. Secretion of the Tat-GFP construct, as well as secretion of proteins in general, was substantially increased in the ancestral strain. Furthermore, our results show that secreted, fluorescent GFP could be purified directly from the extracellular medium. Nonetheless, export was not dependent on the known Tat secretion components or the signal peptide twin-arginine motif. We propose that the ancestral strain contains additional Tat components and/or secretion regulators that were abrogated following domestication.  相似文献   

3.
Xia J  Sollid LM  Khosla C 《Biochemistry》2005,44(11):4442-4449
HLA-DQ2 predisposes an individual to celiac sprue by presenting peptides from dietary gluten to intestinal CD4(+) T cells. A selectively deamidated multivalent peptide from gluten (LQLQPFPQPELPYPQPELPYPQPELPYPQPQPF; underlined residues correspond to posttranslational Q --> E alterations) is a potent trigger of DQ2 restricted T cell proliferation. Here we report equilibrium and kinetic measurements of interactions between DQ2 and (i) this highly immunogenic multivalent peptide, (ii) its individual constituent epitopes, (iii) its nondeamidated precursor, and (iv) a reference high-affinity ligand of HLA-DQ2 that is not recognized by gluten-responsive T cells from celiac sprue patients. The deamidated 33-mer peptide efficiently exchanges with a preloaded peptide in the DQ2 ligand-binding groove at pH 5.5 as well as pH 7.3, suggesting that the peptide can be presented to T cells comparably well through the endocytic pathway or via direct loading onto extracellular HLA-DQ2. In contrast, the monovalent peptides, and the nondeamidated precursor, as well as the tight-binding reference peptide show a much poorer ability to exchange with a preloaded peptide in the DQ2 binding pocket, especially at pH 7.3, suggesting that endocytosis of these peptides is a prerequisite for T cell presentation. At pH 5.5 and 7.3, dissociation of the deamidated 33-mer peptide from DQ2 is much slower than dissociation of its constituent monovalent epitopes or the nondeamidated precursor but faster than dissociation of the reference high-affinity peptide. Oligomeric states involving multiple copies of the DQ2 heterodimer bound to a single copy of the multivalent 33-mer peptide are not observed. Together, these results suggest that the remarkable antigenicity of the 33-mer gluten peptide is primarily due to its unusually efficient ability to displace existing ligands in the HLA-DQ2 binding pocket, rather than an extremely low rate of dissociation.  相似文献   

4.
Dietary gluten proteins from wheat, rye, and barley are the primary triggers for the immuno-pathogenesis of Celiac Sprue, a widespread immune disease of the small intestine. Recent molecular and structural analyses of representative gluten proteins, most notably alpha- and gamma-gliadin proteins from wheat, have improved our understanding of these pathogenic mechanisms. In particular, based on the properties of a 33-mer peptide, generated from alpha-gliadin under physiological conditions, a link between digestive resistance and inflammatory character of gluten has been proposed. Here, we report three lines of investigation in support of this hypothesis. First, biochemical and immunological analysis of deletion mutants of alpha-2 gliadin confirmed that the DQ2 restricted T cell response to the alpha-2 gliadin are directed toward the epitopes clustered within the 33-mer. Second, proteolytic analysis of a representative gamma-gliadin led to the identification of another multivalent 26-mer peptide that was also resistant to further gastric, pancreatic and intestinal brush border degradation, and was a good substrate of human transglutaminase 2 (TG2). Analogous to the 33-mer, the synthetic 26-mer peptide displayed markedly enhanced T cell antigenicity compared to monovalent control peptides. Finally, in silico analysis of the gluten proteome led to the identification of at least 60 putative peptides that share the common characteristics of the 33-mer and the 26-mer peptides. Together, these results highlight the pivotal role of physiologically generated, proteolytically stable, TG2-reactive, multivalent peptides in the immune response to dietary gluten in Celiac Sprue patients. Prolyl endopeptidase treatment was shown to abolish the antigenicity of both the 33-mer and the 26-mer peptides, and was also predicted to have comparable effects on other proline-rich putatively immunotoxic peptides identified from other polypeptides within the gluten proteome.  相似文献   

5.
Current knowledge indicates that both innate and adaptive immune responses are involved in Celiac disease (CD) driven by different gliadin peptides. By studying a representative recombinant alpha-gliadin form, a further 25-mer peptide resistant to gastric, pancreatic, and human intestinal brush-border membrane enzymes was detected. This peptide latter encompasses the sequence 31-43 known to elicit the innate immune response in CD. The resistance of 25-mer, as well as that of the already described 33-mer related to the CD adaptive immune response, was confirmed on a standard flour wheat sample representative of the most widespread European varieties.  相似文献   

6.
Celiac disease is an HLA-DQ2-associated disorder characterized by intestinal T cell responses to ingested wheat gluten proteins. A peptide fragment of 33 residues (alpha(2)-gliadin 56-88) produced by normal gastrointestinal proteolysis contains six partly overlapping copies of three T cell epitopes and is a remarkably potent T cell stimulator after deamidation by tissue transglutaminase (TG2). This 33-mer is rich in proline residues and adopts the type II polyproline helical conformation in solution. In this study we report that after deamidation, the 33-mer bound with higher affinity to DQ2 compared with other monovalent peptides harboring gliadin epitopes. We found that the TG2-treated 33-mer was presented equally effectively by live and glutaraldehyde-fixed, EBV-transformed B cells. The TG2-treated 33-mer was also effectively presented by glutaraldehyde-fixed dendritic cells, albeit live dendritic cells were the most effective APCs. A strikingly increased T cell stimulatory potency of the 33-mer compared with a 12-mer peptide was also seen with fixed APCs. The 33-mer showed binding maximum to DQ2 at pH 6.3, higher than maxima found for other high affinity DQ2 binders. The 33-mer is thus a potent T cell stimulator that does not require further processing within APC for T cell presentation and that binds to DQ2 with a pH profile that promotes extracellular binding.  相似文献   

7.
XAGE-1b belongs to cancer/testis (CT) antigens, and has been shown to be expressed frequently in lung cancers and to elicit an antibody response in patients with XAGE-1b-expressing tumors. In this study, we investigated an XAGE-1b peptide recognized by CD4 T cells. CD4 T cells were purified from PBMC of a healthy donor and stimulated with pooled 25-mer peptides overlapped with 15 amino acids spanning the entire XAGE-1b protein. The generation of XAGE-1b-specific CD4 T cells was shown by IFNgamma secretion assay. A CD4 T cell clone OHD1 was obtained by limiting dilution. OHD1 recognized two overlapping peptides, XAGE1-b(33-49) and XAGE-1b(37-52), by ELISPOT assay. A peptide XAGE-1b(38-46) which was included in both XAGE-1b(33-49) and XAGE-1b(37-52) was predicted to be a DRB1*0410-restricted 9-mer peptide by a computer-based program. We identified the 12-mer peptide XAGE-1b(37-48) as a new XAGE-1b epitope restricted to HLA-DRB1*0410.  相似文献   

8.
Celiac Disease (CD) is a chronic inflammatory enteropathy, triggered in genetically susceptible individuals by dietary gluten. Gluten is able to elicit proliferation of specific T cells and secretion of inflammatory cytokines in the small intestine. In this study we investigated the possibility that p10-mer, a decapeptide from durum wheat (QQPQDAVQPF), which was previously shown to prevent the activation of celiac peripheral lymphocytes, may exert an inhibitory effect on peptic-tryptic digested gliadin (PT-Gly)-stimulated intestinal carcinoma CACO-2 cells. In these cells, incubated with PT-Gly or p31-43 α-gliadin derived peptide in the presence or in the absence of p10-mer, IRAK1 activation and NF-kB, ERK1/2 and p38 MAPK phosphorylation were measured by immunoblotting, Cyclooxigenase 2 (COX-2) activity by PGE-2 release assay, and production of cytokines in the cell supernatants by ELISA. Our results showed that pre-treatment of CACO-2 cells with p10-mer significantly inhibited IRAK1 activation and NF-kB, ERK1/2 and p38 MAPK phosphorylation, as well as COX-2 activity (i.e. PGE-2 release) and production of the IL-6 and IL-8 pro-inflammatory cytokines, induced by gliadin peptides. These findings demonstrate the inhibitory effect of the p10-mer peptide on inflammatory response in CACO-2 cells. The results of the present study show that this p10-mer peptide can modulate "in vitro" the inflammatory response induced by gliadin peptides, allowing to move towards new therapeutic strategies. Turning off the inflammatory response, may in fact represent a key target in the immunotherapy of celiac disease.  相似文献   

9.
The cytoprotective effects of pigment epithelium-derived factor (PEDF) require interactions between an as of a yet undefined region with a distinct ectodomain on the PEDF receptor (PEDF-R). Here we characterized the area in PEDF that interacts with PEDF-R to promote photoreceptor survival. Molecular docking studies suggested that the ligand binding site of PEDF-R interacts with the neurotrophic region of PEDF (44-mer, positions 78–121). Binding assays demonstrated that PEDF-R bound the 44-mer peptide. Moreover, peptide P1 from the PEDF-R ectodomain had affinity for the 44-mer and a shorter fragment within it, 17-mer (positions 98–114). Single residue substitutions to alanine along the 17-mer sequence were designed and tested for binding and biological activity. Altered 17-mer[R99A] did not bind to the P1 peptide, whereas 17-mer[H105A] had higher affinity than the unmodified 17-mer. Peptides 17-mer, 17-mer[H105A], and 44-mer exhibited cytoprotective effects in cultured retina R28 cells. Intravitreal injections of these peptides and PEDF in the rd1 mouse model of retinal degeneration decreased the numbers of dying photoreceptors, 17-mer[H105A] being most effective. The blocking peptide P1 hindered their protective effects both in retina cells and in vivo. Thus, in addition to demonstrating that the region composed of positions 98–114 of PEDF contains critical residues for PEDF-R interaction that mediates survival effects, the findings reveal distinct small PEDF fragments with neurotrophic effects on photoreceptors.  相似文献   

10.
Biodegradation of nicotine by a newly isolated Agrobacterium sp. strain S33   总被引:1,自引:0,他引:1  
Aims: To isolate and characterize bacteria capable of degrading nicotine from the rhizospheric soil of a tobacco plant and to use them to degrade the nicotine in tobacco solid waste. Methods and Results: A bacterium, strain S33, was newly isolated from the rhizospheric soil of a tobacco plant, and identified as Agrobacterium sp. based on morphology, physiological tests, Biolog MicroLog3 4·20 system and 16S rRNA gene sequence. Using nicotine as the sole source of carbon and nitrogen in the medium, it grew optimally with 1·0 g l?1 of nicotine at 30°C and pH 7·0, and nicotine was completely degraded within 6 h. The resting cells prepared from the glucose‐ammonium medium or LB medium could not degrade nicotine within 10 h, while those prepared from the nicotine medium could completely degrade 3 g l?1 of nicotine in 1·5 h at a maximal rate of 1·23 g nicotine h?1 g?1 dry cell. Using the medium containing nicotine, glucose and ammonium simultaneously to cultivate strain S33, the resting cells could degrade 98·87% of nicotine in tobacco solid waste with the concentration as 30 mg nicotine g?1 dry weight tobacco solid waste within 7 h at a maximal rate of 0·46 g nicotine h?1 g?1 dry cell. Conclusions: This is the first report that Agrobacterium sp. has the ability to degrade nicotine. Agrobacterium sp. S33 could use nicotine as the sole source of carbon and nitrogen. The use of resting cells of the strain S33 prepared from the nicotine–glucose–ammonium medium was an effective method to degrade nicotine and detoxify tobacco solid waste. Significance and Impact of the Study: Nicotine in tobacco wastes is both toxic and harmful to human health and the environment. This study showed that Agrobacterium sp. S33 may be suitable for the disposal of tobacco wastes and reducing the nicotine content in tobacco leaves.  相似文献   

11.
Succinic acid is a four-carbon dicarboxylic acid produced as one of the fermentation products of anaerobic metabolism. Based on the complete genome sequence of a capnophilic succinic acid-producing rumen bacterium, Mannheimia succiniciproducens, gene knockout studies were carried out to understand its anaerobic fermentative metabolism and consequently to develop a metabolically engineered strain capable of producing succinic acid without by-product formation. Among three different CO2-fixing metabolic reactions catalyzed by phosphoenolpyruvate (PEP) carboxykinase, PEP carboxylase, and malic enzyme, PEP carboxykinase was the most important for the anaerobic growth of M. succiniciproducens and succinic acid production. Oxaloacetate formed by carboxylation of PEP was found to be converted to succinic acid by three sequential reactions catalyzed by malate dehydrogenase, fumarase, and fumarate reductase. Major metabolic pathways leading to by-product formation were successfully removed by disrupting the ldhA, pflB, pta, and ackA genes. This metabolically engineered LPK7 strain was able to produce 13.4 g/liter of succinic acid from 20 g/liter glucose with little or no formation of acetic, formic, and lactic acids, resulting in a succinic acid yield of 0.97 mol succinic acid per mol glucose. Fed-batch culture of M. succiniciproducens LPK7 with intermittent glucose feeding allowed the production of 52.4 g/liter of succinic acid, with a succinic acid yield of 1.16 mol succinic acid per mol glucose and a succinic acid productivity of 1.8 g/liter/h, which should be useful for industrial production of succinic acid.  相似文献   

12.
A system for the production of mutant recombinant human alpha-fetoprotein (rhAFP0) lacking the glycosylation site has been engineered in the yeast Pichia pastoris. A strain of the methylotrophic yeast Pichia pastoris GS115/pPICZαA/rhAFP0, which produces unglycosylated rhAFP0 and secretes it to the culture medium, has been constructed. Optimization and scale-up of the fermentation technology have resulted in an increase in the rhAFP0 yield to 20 mg/L. A scheme of isolation and purification of biologically active rhAFP0 has been developed. The synthesized protein has the antitumor activity, which is analogous to the activity of natural human embryonic alpha-fetoprotein.  相似文献   

13.
Podlubnaia ZA  Nowak E 《Biofizika》2006,51(5):804-809
It was shown by electron microscopy that PEP33 a synthetic C-terminal peptide of the thymus hormone thymopoietin, formed bundles of actin 'filaments in the presence of 0.1 M KCl. The structure of PEP33 aggregates localizated in the bundles between actin filaments is very similar to that of aggregates observed in samples of pure PEP33. No changes were revealed in the structure of G-actin in the presence of PEP33. A similar, but a weaker bundling effect of thymopentin (PEP5) was also found. It forms bundles of actin filaments of small size. Further studies can shed light on the physiological importance of actin filament aggregation with the peptides of thymopoietin, the systematic release of which from the thymus produces the phenomena characteristic for the serious neuromuscular disease myasthenia gravis.  相似文献   

14.
Membrane surface localized endonuclease EndA of the pulmonary pathogen Streptococcus pneumoniae (pneumococcus) is required for both genetic transformation and virulence. Pneumococcus expresses EndA during growth. However, it has been reported that EndA has no access to external DNA when pneumococcal cells are not competent for genetic transformation, and thus, unable to degrade extracellular DNA. Here, by using both biochemical and genetic methods, we demonstrate the existence of EndA-mediated nucleolytic activity independent of the competence state of pneumococcal cells. Pneumococcal mutants that are genetically deficient in competence development and genetic transformation have extracellular nuclease activity comparable to their parental wild type, including their ability to degrade neutrophil extracellular traps (NETs). The autolysis deficient ΔlytA mutant and its isogenic choline-treated parental wild-type strain D39 degrade extracellular DNA readily, suggesting that partial cell autolysis is not required for DNA degradation. We show that EndA molecules are secreted into the culture medium during the growth of pneumococcal cells, and contribute substantially to competence-independent nucleolytic activity. The competence-independent activity of EndA is responsible for the rapid degradation of DNA and NETs, and is required for the full virulence of Streptococcus pneumoniae during lung infection.  相似文献   

15.
16.
Organophosphate compounds, which are widely used as pesticides and chemical warfare agents, are cholinesterase inhibitors. These synthetic compounds are resistant to natural degradation and threaten the environment. We constructed a strain of Pseudomonas putida that can efficiently degrade a model organophosphate, paraoxon, and use it as a carbon, energy, and phosphorus source. This strain was engineered with the pnp operon from Pseudomonas sp. strain ENV2030, which encodes enzymes that transform p-nitrophenol into β-ketoadipate, and with a synthetic operon encoding an organophosphate hydrolase (encoded by opd) from Flavobacterium sp. strain ATCC 27551, a phosphodiesterase (encoded by pde) from Delftia acidovorans, and an alkaline phosphatase (encoded by phoA) from Pseudomonas aeruginosa HN854 under control of a constitutive promoter. The engineered strain can efficiently mineralize up to 1 mM (275 mg/liter) paraoxon within 48 h, using paraoxon as the sole carbon and phosphorus source and an inoculum optical density at 600 nm of 0.03. Because the organism can utilize paraoxon as a sole carbon, energy, and phosphorus source and because one of the intermediates in the pathway (p-nitrophenol) is toxic at high concentrations, there is no need for selection pressure to maintain the heterologous pathway.  相似文献   

17.
18.
We studied whether celiac disease (CD) patients produce antibodies against a novel gliadin peptide specifically generated in the duodenum of CD patients by a previously described pattern of CD-specific duodenal proteases. Fingerprinting and ion-trap mass spectrometry of CD-specific duodenal gliadin-degrading protease pattern revealed a new 8-mer gliadin-derived peptide. An ELISA against synthetic deamidated 8-mer peptides (DGP 8-mer) was used to study the presence of IgA anti-DGP 8-mer antibodies in plasma samples from 81 children (31 active CD patients (aCD), 17 CD patients on a gluten-free diet (GFD), 10 healthy controls (C) and 23 patients with other gastrointestinal pathology (GP)) and 101 adults (16 aCD, 12 GFD, 27 C and 46 GP-patients). Deamidation of the 8-mer peptide significantly increased the reactivity of the IgA antibodies from CD patients against the peptide. Significant IgA anti-DGP 8-mer antibodies levels were detected in 93.5% of aCD-, 11.8% of GFD- and 4.3% of GP-patients in children. In adults, antibodies were detected in 81.3% of aCD-patients and 8.3% of GFD-patients while were absent in 100% of C- and GP-patients. Duodenal CD-specific gliadin degrading proteases release an 8-mer gliadin peptide that once deamidated is an antigen for specific IgA antibodies in CD patients which may provide a new accurate diagnostic tool in CD.  相似文献   

19.
Increased demand for biofuels promotes the search for new biomass-degrading fungi. Acremonium strictum is an environmentally widespread filamentous fungi found on plant debris; that secretes lignocellulose-degrading enzymes. A recently isolated A. strictum strain, AAJ6; native to the Brazilian Cerrado biome was evaluated for its capacity to degrade lignocellulosic substrates. In this study, whole-genome sequencing of AAJ6 was performed and 775 CAZy domains were identified which correlated to those of A. strictum strain DS1bioAY4a and other lignocellulolytic fungi; suggesting AAJ6 is a high CAZyme producer. We expressed the glycoside hydrolase families GH74 and GH3 from plasmid or genome-integrated to evaluate the ethanol production from cellulosic substrates in Brazilian industrial Saccharomyces cerevisiae strains (PE-2 and SA-1) evolved for thermotolerance (AMY12 and AMY35). Those expressing the genome-integrated enzymes showed the highest β-glucosidase activity and growth in medium with cellobiose at 40°C. The strain AGY005 (integrated cassettes) showed 19, 23 and 46% higher ethanol production in SHF, pSSF (partial hydrolysis SSF) and SSF processes, respectively, using Avicel, and ∼50% more ethanol using pre-treated sugarcane bagasse, compared to the strain with a plasmid-based expression. These results indicate the improved performance of thermotolerant industrial strains with genome-integrated CAZymes in the SSF process for 2G ethanol.  相似文献   

20.
The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the σE stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Δeps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号