首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.  相似文献   

2.
Ecosystem function in rivers, lakes and coastal waters depends on the functioning of upstream aquatic ecosystems, necessitating an improved understanding of watershed-scale interactions including variable surface-water flows between wetlands and streams. As surface water in the Prairie Pothole Region expands in wet years, surface-water connections occur between many depressional wetlands and streams. Minimal research has explored the spatial patterns and drivers for the abundance of these connections, despite their potential to inform resource management and regulatory programs including the U.S. Clean Water Act. In this study, wetlands were identified that did not intersect the stream network, but were shown with Landsat images (1990–2011) to become merged with the stream network as surface water expanded. Wetlands were found to spill into or consolidate with other wetlands within both small (2–10 wetlands) and large (>100 wetlands) wetland clusters, eventually intersecting a stream channel, most often via a riparian wetland. These surface-water connections occurred over a wide range of wetland distances from streams (averaging 90–1400 m in different ecoregions). Differences in the spatial abundance of wetlands that show a variable surface-water connection to a stream were best explained by smaller wetland-to-wetland distances, greater wetland abundance, and maximum surface-water extent. This analysis demonstrated that wetland arrangement and surface water expansion are important mechanisms for depressional wetlands to connect to streams and provides a first step to understanding the frequency and abundance of these surface-water connections across the Prairie Pothole Region.  相似文献   

3.
Attributes of 25 headwater streams and their associated wetlands were quantitatively sampled in the inner coastal plain of eastern North Carolina. Data from these sites were used to construct and test one functional assessment model (biogeochemical cycling) using the hydrogeomorphic (HGM) approach. Of the 25 sites sampled, 16 unaltered sites were used to establish standards against which field indicators could be compared (indexed). Nine altered sites were used to examine the sensitivity of the model to assess the types of alterations typically inflicted upon headwater ecosystems in eastern North Carolina: channelization, logging, construction of cross-floodplain ditches to shunt water directly from uplands to the main stream channel, and conversion of stream floodplains and buffer zones to cropland. Of 30 field indicators measured that potentially could be used to model alterations to hydrologic regime and biomass stocks, we found six were robust in assessing conditions related to biogeochemical cycling. Hydrologic indicators used in the model included: (1) presence/absence of channelization, (2) presence/absence of cross-floodplain ditches, and (3) a measure of buffer condition (using width and quality). Biomass indicators included: (4) total basal area of trees, (5) percent litter cover, and (6) volume of coarse woody debris. Our preliminary biogeochemical cycling model using these six variables was sensitive to alterations in nine altered sites and to a suite of hypothetical restorations of the most altered site. However, in order to improve accuracy of our preliminary model, it should be validated with studies designed to measure how alterations of various types and magnitudes affect biogeochemical processes.  相似文献   

4.
Retention of nitrogen in small streams artificially polluted with nitrate   总被引:3,自引:0,他引:3  
A simple method was developed to test hypotheses on nitrogen retention in first-order streams in an agricultural region near Oslo, SE Norway. A gravity-operated system added a nitrate solution to the streams continuously at a constant rate. Water samples were collected at fixed intervals downstream to follow the rate of decline in streamwater nitrate. Repeated sampling allowed calculation of regression lines from experiments with different levels of additions of nitrate.The experiments showed that removal of nitrate generally increased with higher initial nitrate concentration, regardless of temperature (range 8–16 °C). Higher nitrate removal rates were found in a stream polluted by easily degradable organic matter than in a similar stream fed by groundwater.Experiments conducted in indoor channels lined with a layer of stream sediment gave reproducible, exponential rates of nitrate decrease in the recirculated water.The results are discussed in the framework of first-order streams as protective ecotones between agricultural areas and higher-order parts of the watersheds.  相似文献   

5.
溪流两边的湿地对其含氮量的贡献   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对美国科罗拉多洛基山国家公园内LochVale,小流域溪流商边的湿地土壤水溶液中的含氮量进行了研究,并比较了与其相邻的溪流中的含氮量。结果发现,溪流中的硝态氮含量显著高于3个湿地土壤水溶液中的,而氨态氮则并没有显著差异;溪流水中的pH值要显著高于土壤水溶液中的,而电导率又显著低于后者。同时,还发现取自不同地点的溪流水分的化学性质也有显著的不同,采自溪流支流水分的pH,电导率和硝态氮都要显著高于取自主溪流中的水分的。另外,还分析比较了3个湿地样地的地上部分生产力以及土壤和生物量中的碳和全氮含量。最后,我们认为溪流两边的湿地对溪流中的氮的含量并没有显著的影响。  相似文献   

6.
本文对美国科罗拉多洛基山国家公园内Loch Vale小流域溪流两边的湿地土壤水溶液中的含氮量进行了研究,并比较了与其相邻的溪流中的含氮量。结果发现,溪流中的硝态氮含量显著高于3个湿地土壤水溶液中的,而氨态氮则并没有显著差异;溪流水中的pH值要显著高于土壤水溶液中的,而电导率又显著低于后者。同时,还发现取自不同地点的溪流水分的化学性质也显著的不同,采自溪流支流水分的pH,电导率和硝态氮都要显著高于取自主溪流中的水分的。另外,还分析比较了3个湿地样地的地上部分生产力以及土壤和生物量中的碳和全氮含量。最后,我们认为溪流两边的湿地对溪流中的氮的含量并没有显著的影响。  相似文献   

7.
Denitrification (N2 production) and oxygen consumption rates were measured at ambient field nitrate concentrations during summer in sediments from eight wetlands (mixed hardwood swamps, cedar swamps, heath dominated shrub wetland, herbaceous peatland, and a wetland lacking live vegetation) and two streams. The study sites included wetlands in undisturbed watersheds and in watersheds with considerable agricultural and/or sewage treatment effluent input. Denitrification rates measured in intact cores of water-saturated sediment ranged from 20 to 260 mol N m-2 h-1 among the three undisturbed wetlands and were less variable (180 to 260 mol N M-2 h-1) among the four disturbed wetlands. Denitrification rates increased when nitrate concentrations in the overlying water were increased experimentally (1 up to 770 M), indicating that nitrate was an important factor controlling denitrification rates. However, rates of nitrate uptake from the overlying water were not a good predictor of denitrification rates because nitrification in the sediments also supplied nitrate for denitrification. Regardless of the dominant vegetation, pH, or degree of disturbance, denitrification rates were best correlated with sediment oxygen consumption rates (r 2 = 0.912) indicating a relationship between denitrification and organic matter mineralization and/or sediment nitrification rates. Rates of denitrification in the wetland sediments were similar to those in adjacent stream sediments. Rates of denitrification in these wetlands were within the range of rates previously reported for water-saturated wetland sediments and flooded soils using whole core15N techniques that quantify coupled nitrification/denitrification, and were higher than rates reported from aerobic (non-saturated) wetland sediments using acetylene block methods.  相似文献   

8.
9.
Mountaintop removal–valley fill mining results in the conversion of steep, forested headwater catchments to low gradient and open canopy channels. We compared the ecological functions of five reference stream channels to five constructed channels (age ranging from 3 to 20 years) on reclaimed mines in southern West Virginia. Variables included stream flow, habitat, water chemistry, riparian vegetation, organic matter (OM) processing, and invertebrate and amphibian communities. Although dissolved metal concentrations remained low, constructed channels produced significantly higher levels of conductivity and total dissolved solids as compared to reference streams. Macroinvertebrate and amphibian richness were comparable between constructed and reference channels; however, there was a distinct shift from sensitive lotic taxa in reference channels to tolerant lentic taxa in constructed channels. Constructed channels also had reduced OM decomposition rates. Nevertheless, constructed channels had significantly higher OM retention than reference channels, and consequently exhibited significantly higher overall OM processing and higher dissolved carbon concentrations. As the time since reclamation increased, we observed slight declines in conductivity and significant increases in total invertebrate richness. Our results provide measures of functional equivalencies between reference and constructed streams, which can serve as a basis for informed permitting and mitigation decisions in mined watersheds.  相似文献   

10.
11.
We examined the distribution patterns of four amphipod and one isopod crustaceans in 23 cave stream segments within a subterranean drainage basin. The patterns indicate that invasion history is a strong determinant of the species' distributions. One set of species likely has invaded the cave system from the zone of interstitial water, and thus is distributed mainly in headwater streams throughout the drainage. One species probably invaded through upstream migration from the resurgence of the cave system, and thus is strongly associated with the larger, higher-order streams. The effect of interspecific interactions on the patterns of distribution is not apparent at our scale of analysis.  相似文献   

12.
Headwater streams are important resources in production of organic matter, but zooplankton of headwater streams has rarely been studied. In the present study spatial changes in zooplankton communities between upper headwater forest section and downstream meadow section of four small streams were examined (NW Poland). The environmental conditions of stream riparian zone, e.g., the presence of leaf litter, pools, slackwaters and wetlands had a great influence on the spatial changes in zooplankton. Low gradient of stream bed, longer water residence time and larger surfaces of wetlands and slackwaters also positively affected zooplankton communities, especially in the meadow section. Along the streams, from the stream headwater to the downstream-meadow section, significant spatial changes in zooplankton communities were observed. Significantly higher number of taxa and density of zooplankton were observed in meadow sections than in headwater forest sections. In the forest sections, there was a definite domination of benthic and littoral rotifers in the zooplankton composition, while in the meadow sections, planktonic rotifers dominated. Cladocerans were observed only in downstream meadow section; two littoral species Coronatella rectangula and Peracantha truncata and one planktonic Daphnia magna which probably were washed from close pools of small stagnant water bodies. Copepods were noted along the entire length of streams. The occasional presence of planktonic rotifers in the forest section was probably caused by their washout from a few small stagnant water bodies.  相似文献   

13.
Groundwater-surface water (GW-SW) interaction lengthens hydraulic residence times, increases contact between solutes and biologically active surfaces, and often creates a gradient of redox conditions conducive to an array of biogeochemical processes. As such, the interaction of hydraulic patterns and biogeochemical activity is suspected to be an important determinant of elemental spiraling in streams. Hydrologic interactions may be particularly important in headwater streams, where the extent of the GW-SW mixing environment (i.e., hyporheic zone) is proportionately greater than in larger streams. From our current understanding of stream ecosystem function, we discuss nitrogen (N) spiraling, present a conceptual model of N retention in streams, and use both of these issues to generate specific research questions and testable hypotheses regarding N dynamics in streams.  相似文献   

14.
1. Assessment of the role of landscape structures such as buffers is a necessary prerequisite for the sustainable management of water resources in an agricultural setting. 2. We monitored nitrate concentrations during interstorm periods at the outlet of 16 subcatchments of different orders within a catchment of 378 km2. We characterised stream network, wetlands, agricultural practices and land cover and identified their relationships with nitrate fluxes and concentrations. 3. Two main factors controlled annual nitrate fluxes: the agricultural nitrogen surplus and the nature of the system comprising the wetland zone and adjoining watercourses. In the latter case, nitrate fluxes were reduced in proportion to the surface area of the riparian wetland and the flowpath distance of fluxes in the stream network. At the scale of the order‐6 stream, 53% of annual nitrate flux during interstorm periods was removed during transfer via the wetland and the river, corresponding to 21.1 kg N ha?1 per year. 4. The influence of the riparian wetland zone/watercourse system increased during periods of low water level, explaining up to 64% of nitrate concentration variation among locations within the river network, but only 9% during periods of high water level. 5. The buffering role was stronger at higher stream orders, and the dependence on stream order was more apparent at low water level, when we observed mean nitrate concentrations in the order‐6 stream that were 47% lower than observed in order‐2 or order‐3 streams.  相似文献   

15.
16.
The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed.  相似文献   

17.
Straightened stream channels and altered and drained wetlands have adversely impacted streams and rivers throughout Midwestern USA, where some of the most dense drainage and riparian ecosystem alteration in the world have occurred. A segment of Grave Creek on The Ohio State University's Marion (OSU Marion) campus in Ohio, USA, with its lack of riparian ecosystems, illustrates the transformation of a natural fluvial ecosystem to an unstable and “simplified” aquatic environment that requires continued maintenance and provides little value to the surrounding landscape or to the university. However, the straight ditch, available adjacent riparian land and existing hydric soil give OSU Marion a great opportunity to demonstrate a project of stream and wetland restoration on a college campus. To restore the natural ecological stability of OSU Marion's “back yard” and to provide habitat improvement to Grave Creek and its surrounding landscape on the OSU Marion campus, we have designed a restoration of 1.1 km of Grave Creek meandering to the east of the existing sewer, using the two-stage channel techniques, and about 0.6–0.8 ha of adjacent wetland. We estimate that restoration on this scale will cost about US$ 200,000–300,000, not including monitoring of the results. To fulfill this project, it is likely that an opportunity for using this restoration in a stream/wetland loss mitigation will present itself in this region of Ohio while a long-term pre- and post-construction monitoring plan and more detailed design would be expected as the next step.  相似文献   

18.
19.
Leaf litter plays a critical role in regulating ecological functions in headwater forest streams, whereas the effects of leaves on water quality in urbanized streams are not fully understood. This study examined the potential importance of leaf litter for the release and transformations of organic carbon and nutrients in urban streams, and compared the effects with other types of natural organic substrates (periphyton and stream sediment). Nutrients and organic carbon were leached from senescent leaves of 6 tree species in the laboratory with deionized water, and maximal releases, leaching rate constants, composition and bioavailability of the leached dissolved organic carbon (DOC) were determined. Stream substrates (leaf debris, rocks with periphyton, and sediment) were seasonally collected from urban and forest reference streams of the NSF Baltimore Long-term Ecological Research Site and incubated with overlying stream water to estimate areal fluxes of DOC and nitrogen. Leaf litter leaching showed large ranges in maximal releases of DOC (7.0–131 mg g?1), dissolved organic nitrogen (DON; 0.07–1.39 mg g?1) and total dissolved phosphorus (TDP; 0.14–0.70 mg g?1) among tree species. DOC leaching rate constants, carbon to nitrogen ratios, and DOC bioavailability were all correlated with organic matter quality indicated by fluorescence spectroscopy. Results from substrate incubation experiments showed far higher DOC and DON release and nitrate retention with leaf debris than with sediment, or rocks with periphyton. DOC release from leaf debris was positively correlated with stream nitrate retention at residential and urban sites, with the highest values observed during the fall and lowest during the summer. This study suggests the potential importance of leaf litter quantity and quality on fostering DOC and nutrient release and transformations in urban streams. It also suggests that species-specific impacts of leaves should be considered in riparian buffer and stream restoration strategies.  相似文献   

20.
Clearfell, burn and sow (CBS) forestry can potentially alter stream environments by increasing available light and the input of woody debris. However, little is known about how CBS forestry affects in-stream processes such as nutrient uptake. We evaluate whether short-term (2–7 years) environmental changes (e.g. light availability and woody debris) associated with CBS forestry lead to differences in nutrient uptake metrics. To do this, we measured in-stream uptake of soluble reactive phosphorus (SRP) and ammonium (NH4) in three old growth (OG) and four CBS-affected headwater stream reaches. The abundance of fine woody debris and light availability were significantly greater in CBS-affected than in OG reaches. Uptake velocities varied from 0.0880 to 0.951 mm min?1 for NH4 and from 0.0383 to 1.06 mm min?1 for SRP across all sites. The mean uptake of SRP, but not NH4, was significantly greater (i.e. higher uptake velocities and lower uptake lengths) in CBS-affected than in OG reaches. These results suggest that CBS forestry altered the stream environment enabling greater SRP uptake relative to OG reaches. Our findings highlight the tight linkage between headwater streams and their surrounding terrestrial environment, which has direct implications for catchment-scale biogeochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号