首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant defensins are small (45 to 54 amino acids) positively charged antimicrobial peptides produced by the plant species, which can inhibit the growth of a broad range of fungi at micro-molar concentrations. These basic peptides share a common characteristic three-dimensional folding pattern with one α-helix and three β-sheets that are stabilized by eight disulfide-linked cysteine residues. Instead of using two single-gene constructs, it is beneficial when two effective genes are made into a single fusion gene with one promoter and terminator. In this approach, we have linked two plant defensins namely Trigonella foenum-graecum defensin 2 (Tfgd2) and Raphanus sativus antifungal protein 2 (RsAFP2) genes by a linker peptide sequence (occurring in the seeds of Impatiens balsamina) and made into a single-fusion gene construct. We used pET-32a+ vector system to express Tfgd2-RsAFP2 fusion gene with hexahistidine tag in Escherichia coli BL21 (DE3) pLysS cells. Induction of these cells with 1 mM IPTG achieved expression of the fusion protein. The solubilized His6-tagged recombinant fusion protein was purified by immobilized-metal (Ni2+) affinity column chromatography. The final yield of the fusion protein was 500 ng/μL. This method produced biologically active recombinant His6-tagged fusion protein, which exhibited potent antifungal action towards the plant pathogenic fungi (Botrytis cinerea, Fusarium moniliforme, Fusarium oxysporum, Phaeoisariopsis personata and Rhizoctonia solani along with an oomycete pathogen Phytophthora parasitica var nicotianae) at lower concentrations under in vitro conditions. This strategy of combining activity of two defensin genes into a single-fusion gene will definitely be a promising utility for biotechnological applications.  相似文献   

2.
3.
Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis.  相似文献   

4.
The Streptomyces bacteriophage, φC31, uses a site-specific integrase enzyme to perform efficient recombination. The recombination system uses specific sequences to integrate exogenous DNA from the phage into a host. The sequences are known as the attP site in the phage and the attB site in the host. The system can be used as a genetic manipulation tool. In this study it has been applied to the transformation of cultured BmN cells and the construction of transgenic Bombyx mori individuals. A plasmid, pSK-attB/Pie1-EGFP/Zeo-PASV40, containing a cassette designed to express a egfp-zeocin fusion gene, was co-transfected into cultured BmN cells with a helper plasmid, pSK-Pie1/NLS-Int/NSL. Expression of the egfp-zeocin fusion gene was driven by an ie-1 promoter, downstream of a φC31 attB site. The helper plasmid encoded the φC31 integrase enzyme, which was flanked by two nuclear localization signals. Expression of the egfp-zeocin fusion gene could be observed in transformed cells. The two plasmids were also transferred into silkworm eggs to obtain transgenic silkworms. Successful integration of the fusion gene was indicated by the detection of green fluorescence, which was emitted by the silkworms. Nucleotide sequence analysis demonstrated that the attB site had been cut, to allow recombination between the attB and endogenous pseudo attP sites in the cultured silkworm cells and silkworm individuals.  相似文献   

5.
The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15–20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.  相似文献   

6.
Antimicrobial peptides are important defense compounds of higher organisms that can be used as therapeutic agents against bacterial and/or viral infections. We designed several antimicrobial peptides containing hydrophobic and positively charged clusters that are active against plant and human pathogens. Especially peptide SP1-1 is highly active with a MIC value of 0.1 μg/ml against Xanthomonas vesicatoria, Pseudomonas corrugata and Pseudomonas syringae pv syringae. However, for commercial applications high amounts of peptide are necessary. The synthetic production of peptides is still quite expensive and, depending on the physico-chemical features, difficult. Therefore we developed a plant/tobacco mosaic virus-based production system following the ‘full virus vector strategy’ with the viral coat protein as fusion partner for the designed antimicrobial peptide. Infection of Nicotiana benthamiana plants with such recombinant virus resulted in production of huge amounts of virus particles presenting the peptides all over their surface. After extraction of recombinant virions, peptides were released from the coat protein by chemical cleavage. A protocol for purification of the antimicrobial peptides using high resolution chromatographic methods has been established. Finally, we yielded up to 0.025 mg of peptide per g of infected leaf biomass. Mass spectrometric and NMR analysis revealed that the in planta produced peptide differs from the synthetic version only in missing of N-terminal amidation. But its antimicrobial activity was in the range of the synthetic one. Taken together, we developed a protocol for plant-based production and purification of biologically active, hydrophobic and positively charged antimicrobial peptide.  相似文献   

7.
Human beta-defensin-4 (hBD4) is a cationic 50-amino acid antimicrobial peptide with three conserved cysteine disulfide bonds. It exhibits a broad antimicrobial spectrum. This study describes the synthesis of hBD4 gene, the heterologous fusion expression of the peptide in Escherichia coli, and the bioactive assay of released hBD4. A PCR-based gene SOEing (splicing by overlap extension) synthesis method was used in the synthesis of the hBD4 gene with optimized codons. By constructing the expression plasmid (pET32-smhBD4), high concentration of soluble hBD4 fusion protein (1.9 g/l) can be obtained in E. coli. Further optimization studies showed that the expression system was very efficient to produce soluble target protein, and the solubility of the target protein could attain more than 99% even when the culture temperature was as high as 37°C. The highest productivity (2.68 g/l) of the hBD4 fusion protein was achieved by cultivating the E. coli (pET32-smhBD4) in MBL medium at 34°C, inducing the culture at the mid-exponential phase with 0.4-mM isopropyl β-d-galactopyranoside (IPTG), and collecting the broth after 6-h expression. The soluble target protein accounted for 64.6% of the total soluble proteins, and the mature hBD4 expression level was stoichiometrically estimated to be 0.689 g/l. This fusion protein was then purified and cleaved to get the mature hBD4 peptide that showed antimicrobial activity against E. coli and Pseudomonas aeruginosa.  相似文献   

8.
Helicobacter pylori (H. pylori) shows increasingly enhanced resistance to various antibiotics, and its eradication has become a major problem in medicine. The antimicrobial peptide PGLa-AM1 is a short peptide with 22 amino acids and exhibits strong antibacterial activity. In this study, we investigated whether it has anti-H. pylori activity for the further development of anti-H. pylori drugs to replace existing antibiotics. However, the natural antimicrobial peptide PGLa-AM1 shows a low yield and is difficult to separate, limiting its application. A good strategy to solve this problem is to express the antimicrobial peptide PGLa-AM1 using gene engineering at a high level and low cost. For getting PGLa-AM1 with native structure, in this study, a specific protease cleavage site of tobacco etch virus (TEV) was designed before the PGLa-AM1 peptide. For convenience to purify and identify high-efficiency expression PGLa-AM1, the PGLa-AM1 gene was fused with the polyhedrin gene of Bombyx mori (B. mori), and a 6 × His tag was designed to insert before the amino terminus of the fusion protein. The fusion antibacterial peptide PGLa-AM1 (FAMP) gene codon was optimized, and the gene was synthesized and cloned into the Escherichia coli (E. coli) pET-30a (+) expression vector. The results showed that the FAMP was successfully expressed in E. coli. Its molecular weight was approximately 34 kDa, and its expression level was approximately 30 mg/L. After the FAMP was purified, it was further digested with TEV protease. The acquired recombinant antimicrobial peptide PGLa-AM1 exerted strong anti-H. pylori activity and therapeutic effect in vitro and in vivo.  相似文献   

9.
Wang Q  Zhu F  Xin Y  Liu J  Luo L  Yin Z 《Biotechnology letters》2011,33(11):2121-2126
A novel production method in Escherichia coli for an antimicrobial peptide of 21 amino acids, buforin IIb, which is a synthetic analog of buforin II, has been developed. The buforin IIb gene was cloned into the vector pET32a to construct an expression vector pET32a–buforin IIb. The fusion protein Trx-buforin IIb, purified by nickel nitrilo-triacetic acid (Ni-NTA) resin chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant buforin IIb. Purification of recombinant buforin IIb was achieved by HPLC: about 3.1 mg/l active recombinant buforin IIb with purity >99% was obtained. The recombinant buforin IIb showed antimicrobial activities that were similar to the synthetic one.  相似文献   

10.
A magainin derivative, designated MSI-344, was produced in Escherichia coli as fusion protein, by utilizing a truncated amidophsphoribosyltransferase of E. coli as a fusion partner. Bacterial cells transformed with the gene encoding the fusion protein were grown to a high cell density and induced with isopropyl-1-thio-b-D-galatoside (IPTG) to initiate product expression. The fusion protein was accumulated into cytoplasmic inclusion body and recombinant MSI-344 was released from the fusion partner by hydroxylamine treatment. Following cleavage of the fusion protein with hydroxylamine, the released MSI-344 was purified to homogeneity by cationic exchange chromatography. The final purity was at least 95% by reversed-phase high performance liquid chromatography (RP-HPLC). Purified recombinant MSI-344 was found to be indistinguishable from the synthetic peptide determined by amino acid sequences and antimicrobial activity assay.  相似文献   

11.

Background

To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.

Results

Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia.

Conclusions

The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.  相似文献   

12.
Major royal jelly protein-1 (MRJP1) is the most abundant glycoprotein of royal jelly (RJ) and is considered a potential component of functional foods. In this study, we used silkworm transgenic technology to obtain five transgenic silkworm lineages expressing the exogenous recombinant Chinese honeybee, Apis cerana cerana, protein-1 (rAccMRJP1) under the control of a fibroin light chain (Fib-L) promoter in the posterior silk glands. The protein was successfully secreted into cocoons; specifically, the highest rAccMRJP1 protein content was 0.78% of the dried cocoons. Our results confirmed that the protein band of the exogenous rAccMRJP1 protein expressed in the transgenic silkworm lineages was a glycosylated protein. Therefore, this rAccMRJP1 protein could be used as an alternative standard protein sample to measure the freshness of RJ. Moreover, we also found that the overall trend between the expression of the endogenous and exogenous genes was that the expression level of the endogenous Fib-L gene declined as the expression of the exogenous rAccMRJP1 gene increased in the transgenic silkworm lineages. Thus, by employing genome editing technology to reduce silk protein expression levels, a silkworm bioreactor expression system could be developed as a highly successful system for producing various valuable heterologous proteins, potentially broadening the applications of the silkworm.  相似文献   

13.
The NB-C1 gene, acquired from the result of data mining of the lactic acid bacteria genome, is a novel potential class IIa bacteriocin gene with the characteristic YGNGVxC cluster. To produce soluble NB-C1 efficiently and overcome issues of protein toxicity, we adopted a GFP fusion strategy using an Escherichia coli cell-free protein expression system. We constructed the expression vector pIVEX2.4d-GFP-NB-C1, which was expressed in both the batch mode and the continuous exchange cell-free (CECF) systems. The amount of soluble fusion protein achieved from the CECF system (2.2 mg/ml) was approximately three times higher than that in the batch mode (0.73 mg/ml). The soluble fusion protein was purified via one-step Ni–NTA affinity chromatography, with a concentration of 0.26 mg/ml and a purity of 95%. The purified NB-C1 showed strong antimicrobial activity against the indicator bacteria Listeria monocytogenes.  相似文献   

14.
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic α-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as 15N, 13C and/or 2H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C18 column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the 15N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform 15N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

15.
The coding sequence, which corresponds to the mature antimicrobial peptide ranalexin from the frog Rana catesbeiana, was chemically synthesized with preferred codons for expression in Escherichia coli. It was cloned into the vector pET32c (+) to express a thioredoxin-ranalexin fusion protein which was produced in soluble form in E. coli BL21 (DE3) induced under optimized conditions. After two purification steps through affinity chromatography, about 1 mg of the recombinant ranalexin was obtained from 1 L of culture. Mass spectrometrical analysis of the purified recombinant ranalexin demonstrated its identity with ranalexin. The purified recombinant ranalexin is biologically active. It showed antibacterial activities similar to those of the native peptide against Staphylococcus aureus, Streptococcus pyogenes, E. coli, and multidrug-resistant strains of S. aureus with minimum inhibitory concentration values between 8 and 128 μg/ml. The recombinant ranalexin is also cytotoxic in HeLa and COS7 human cancer cells (IC50?=?13–15 μg/ml).  相似文献   

16.
In the blood (hemolymph) of the silkworm Bombyx mori, the insect cytokine paralytic peptide (PP) is converted from an inactive precursor to an active form in response to the cell wall components of microorganisms and contributes to silkworm resistance to infection. To investigate the molecular mechanism underlying the up-regulation of host resistance induced by PP, we performed an oligonucleotide microarray analysis on RNA of blood cells (hemocytes) and fat body tissues of silkworm larvae injected with active PP. Expression levels of a large number of immune-related genes increased rapidly within 3 h after injecting active PP, including phagocytosis-related genes such as tetraspanin E, actin A1, and ced-6 in hemocytes, and antimicrobial peptide genes cecropin A and moricin in the fat body. Active PP promoted in vitro and in vivo phagocytosis of Staphyloccocus aureus by the hemocytes. Moreover, active PP induced in vivo phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) in the fat body. Pretreatment of silkworm larvae with ML3403, a pharmacologic p38 MAPK inhibitor, suppressed the PP-dependent induction of cecropin A and moricin genes in the fat body. Injection of active PP delayed the killing of silkworm larvae by S. aureus, whereas its effect was abolished by preinjection of the p38 MAPK inhibitor, suggesting that p38 MAPK activation is required for PP-dependent defensive responses. These findings suggest that PP acts on multiple tissues in silkworm larvae and acutely activates cellular and humoral immune responses, leading to host protection against infection.  相似文献   

17.
The antimicrobial peptide CM4 is a 35-residue cationic peptide. To explore a new approach for the expression and purification of CM4 in Escherichia coli, the CM4 gene was cloned into the vector pET32a to construct an expression vector pET32a-CM4. The fusion protein Trx-CM4, purified by Ni2+-chelating chromatography, was cleaved by hydroxylamine hydrochloride to release recombinant CM4. Purification of recombinant CM4 was achieved by reverse HPLC chromatography, and about 1.4 mg/l active recombinant CM4 with the purity more than 98% was obtained. The recombinant CM4 showed antimicrobial activities that were similar to synthetic one. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

18.
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide–lactoferricin fusion gene. The monomeric acidic peptide–lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-β-d-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.  相似文献   

19.
《Gene》1997,186(1):55-60
Calmodulin-binding peptide (CBP), a peptide of 26 amino acids derived from muscle myosin light chain kinase (MLCK), binds to calmodulin with nanomolar affinity. Proteins fused in frame with CBP can be purified from crude E. coli lysates in a single step using calmodulin affinity chromatography (Stofko-Hahn et al., 1992). Because the binding between CBP and calmodulin is calcium-dependent, the fusion protein can be eluted from the resin with virtually any buffer containing EGTA (2 mM) and used directly for many applications. To take full advantage of this affinity purification system, we constructed the versatile CBP fusion protein expression vector pCAL-n. The CBP coding sequence was positioned for fusion at the N-terminus, an advantage that ensures consistent high level synthesis of fusion proteins due to the efficient translation of the CBP in E. coli. The production of fusion proteins from pCAL-n is controlled by the tightly regulated T7lacO promoter. A versatile multiple cloning site (MCS) was included to facilitate the cloning of genes of interest. The protein coding sequence for the enzyme c-Jun N-terminal kinase (JNK) was inserted into the MCS of pCAL-n, and the resulting fusion protein CBP-JNK synthesized in E. coli cells at 15–20 mg/l culture. CBP-JNK was purified to near homogeneity in one step with calmodulin affinity resin. Purified CBP-JNK is fully active, and the CBP peptide tag can be removed by cleavage with thrombin. We also show that CBP can be efficiently phosphorylated by cAMP-dependent protein kinase. Hence, the purified fusion proteins can be labeled directly with [γ-32P]ATP and used to probe protein–protein or protein–nucleic acid interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号