首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Microbial degradation is the only sustainable component of natural attenuation in contaminated groundwater environments, yet its controls, especially in anaerobic aquifers, are still poorly understood. Hence, putative spatial correlations between specific populations of key microbial players and the occurrence of respective degradation processes remain to be unraveled. We therefore characterized microbial community distribution across a high-resolution depth profile of a tar oil-impacted aquifer where benzene, toluene, ethylbenzene, and xylene (BTEX) degradation depends mainly on sulfate reduction. We conducted depth-resolved terminal restriction fragment length polymorphism fingerprinting and quantitative PCR of bacterial 16S rRNA and benzylsuccinate synthase genes (bssA) to quantify the distribution of total microbiota and specific anaerobic toluene degraders. We show that a highly specialized degrader community of microbes related to known deltaproteobacterial iron and sulfate reducers (Geobacter and Desulfocapsa spp.), as well as clostridial fermenters (Sedimentibacter spp.), resides within the biogeochemical gradient zone underneath the highly contaminated plume core. This zone, where BTEX compounds and sulfate—an important electron acceptor—meet, also harbors a surprisingly high abundance of the yet-unidentified anaerobic toluene degraders carrying the previously detected F1-cluster bssA genes (C. Winderl, S. Schaefer, and T. Lueders, Environ. Microbiol. 9:1035-1046, 2007). Our data suggest that this biogeochemical gradient zone is a hot spot of anaerobic toluene degradation. These findings show that the distribution of specific aquifer microbiota and degradation processes in contaminated aquifers are tightly coupled, which may be of value for the assessment and prediction of natural attenuation based on intrinsic aquifer microbiota.  相似文献   

2.
The potential of hydrocarbon biodegradation in marine sediments was determined through the detection of a functional biomarker, the bssA gene, coding for benzylsuccinate synthase, the key enzyme of anaerobic toluene degradation. Eight bssA clone libraries (409 sequences) were constructed from polluted sediments affected by the Prestige oil spill in the Atlantic Islands National Park and from hydrocarbon-amended sediment microcosms in Mallorca. The amplified products and database-derived bssA-like sequences grouped into four major clusters, as determined by phylogenetic reconstruction, principal coordinate analysis (PCoA), and a subfamily prediction tool. In addition to the classical bssA sequences that were targeted, we were able to detect sequences homologous to the naphthylmethylsuccinate synthase gene (nmsA) and the alkylsuccinate synthase gene (assA), the bssA homologues for anaerobic 2-methylnaphthalene and alkane degradation, respectively. The detection of bssA-like variants was determined by the persistence and level of pollution in the marine samples. The observed level of gene diversity was lower in the Mallorca sediments, which were dominated by assA-like sequences. In contrast, the Atlantic Islands samples, which were highly contaminated with methylnaphthalene-rich crude oil, showed a high proportion of nmsA-like sequences. Some of the detected genes were phylogenetically related to Deltaproteobacteria communities, previously described as the predominant hydrocarbon degraders at these sites. Differences between all detected bssA-like genes described to date indicate separation between marine and terrestrial sequences and further subgrouping according to taxonomic affiliation. Global analysis suggested that bssA homologues appeared to cluster according to substrate specificity. We observed undetected divergent gene lineages of bssA homologues, which evidence the existence of new degrader groups in these environments.  相似文献   

3.
The assessment of biodegradation activity in contaminated aquifers is critical to demonstrate the performance of bioremediation and natural attenuation and to parameterize models of contaminant plume dynamics. Real time quantitative PCR (qPCR) was used to target the catabolic bssA gene (coding for benzylsuccinate synthase) and a 16S rDNA phylogenetic gene (for total Bacteria) as potential biomarkers to infer on anaerobic toluene degradation rates. A significant correlation (P = 0.0003) was found over a wide range of initial toluene concentrations (1–100 mg/l) between toluene degradation rates and bssA concentrations in anaerobic microcosms prepared with aquifer material from a hydrocarbon contaminated site. In contrast, the correlation between toluene degradation activity and total Bacteria concentrations was not significant (P = 0.1125). This suggests that qPCR targeting of functional genes might offer a simple approach to estimate in situ biodegradation activity, which would enhance site investigation and modeling of natural attenuation at hydrocarbon-contaminated sites.  相似文献   

4.
Dissimilatory iron-reducing bacteria are commonly found in microbial communities of aromatic hydrocarbon-contaminated subsurface environments where they often play key role in the degradation of the contaminants. The Siklós benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated area is one of the best characterized petroleum hydrocarbon-contaminated sites of Hungary. Continuous monitoring of the microbial community in the center of the contaminant plume indicated the presence of an emerging Geobacter population and a Rhodoferax phylotype highly associated with aromatic hydrocarbon-contaminated subsurface environments. The aim of the present study was to make an initial effort to enrich Rhodoferax-related and other dissimilatory iron-reducing bacteria from this environment. Accordingly, four slightly different freshwater media were used to enrich Fe(III) reducers, differing only in the form of nitrogen source (organic, inorganic nitrogen or gaseous headspace nitrogen). Although enrichment of the desired Rhodoferax phylotype was not succeeded, Geobacter-related bacteria were readily enriched. Moreover, the different nitrogen sources caused the enrichment of different Geobacter species. Investigation of the diversity of benzylsuccinate synthase gene both in the enrichments and in the initial groundwater sample indicated that the Geobacter population in the center of the contaminant plume may not play a significant role in the anaerobic degradation of toluene.  相似文献   

5.
6.
The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.  相似文献   

7.
Methanogenic flowthrough aquifer columns were used to investigate the potential of bioaugmentation to enhance anaerobic benzene-toluene-ethylbenzene-xylene (BTEX) degradation in groundwater contaminated with ethanol-blended gasoline. Two different methanogenic consortia (enriched with benzene or toluene and o-xylene) were used as inocula. Toluene was the only hydrocarbon degraded within 3 years in columns that were not bioaugmented, although anaerobic toluene degradation was observed after only 2 years of acclimation. Significant benzene biodegradation (up to 88%) was observed only in a column bioaugmented with the benzene-enriched methanogenic consortium, and this removal efficiency was sustained for 1 year with no significant decrease in permeability due to bioaugmentation. Benzene removal was hindered by the presence of toluene, which is a more labile substrate under anaerobic conditions. Real-time quantitative PCR analysis showed that the highest numbers of bssA gene copies (coding for benzylsuccinate synthase) occurred in aquifer samples exhibiting the highest rate of toluene degradation, which suggests that this gene could be a useful biomarker for environmental forensic analysis of anaerobic toluene bioremediation potential. bssA continued to be detected in the columns 1 year after column feeding ceased, indicating the robustness of the added catabolic potential. Overall, these results suggest that anaerobic bioaugmentation might enhance the natural attenuation of BTEX in groundwater contaminated with ethanol-blended gasoline, although field trials would be needed to demonstrate its feasibility. This approach may be especially attractive for removing benzene, which is the most toxic and commonly the most persistent BTEX compound under anaerobic conditions.  相似文献   

8.
To understand the potential for toluene removal under electron acceptor depleted conditions, stable isotope probing (SIP) was applied to a methanogenic toluene degrading culture to identify the microorganisms responsible for toluene assimilation. Both bacterial and archaeal communities were investigated. The approach involved addition of labeled and unlabeled toluene to microcosms, DNA extraction, ultracentrifugation, and analysis of the generated fractions, as well as the total genomic DNA. Three genes were investigated in the fractions, including the 16S rRNA gene, bssA (encoding for benzylsuccinate synthase α-subunit) and bamA (encoding for 6-oxocylcohex-1-ene-1-carbonyl-CoA hydrolase). Analysis of the total genomic 16S rRNA gene clone library indicated the microbial community was reasonably diverse, containing microorganisms from six phyla (Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria, Deferribacteres, Bacteroidetes). In contrast, only four phylotypes were found in the heavy fraction 16S rRNA gene clone library (from three phyla: Firmicutes, Acidobacteria, Actinobacteria). When these data were correlated with the TRFLP fragments enriched in the heavy fractions, three phylotypes were identified. Specifically, a Desulfosporosinus phylotype was highly enriched in the heavy fractions and was therefore the key consumer of the labeled carbon from toluene. Two other phylotypes, Peptostreptococcaceae and Pseudonocardia were presumed to consume daughter products and produce methane precursors, which in turn were likely utilized by Methanomicrobia to produce methane. Further, the SIP results suggested that the enzymes encoding by functional genes (bssA and bamA) were likely to be harbored by the Desulfosporosinus phylotype.  相似文献   

9.
Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.  相似文献   

10.
The ability of indigenous bacteria to anaerobically degrade monoaromatic hydrocarbons has received attention as a potential strategy to remediate polluted aquifers. Despite the fact that iron-reducing conditions are often dominating in contaminated sediment, most of the studies have focussed on degradation of this class of pollutants with other terminal acceptors. In this work, we enriched bacteria from an iron-reducing aquifer in which a plume of pollution has developed over several decades and we show that benzene, toluene, meta- and para-xylene (BTX) could be degraded by the enriched cultures containing intrinsic iron-reducing microorganisms. To our knowledge, this is the first time that para-xylene degradation by dissimilatory iron-reducing bacteria has been reported in sediment free enrichment cultures. BTX degradation rates in enrichment cultures progressively increased in time and were found in good agreement with theoretical values calculated assuming complete BTX oxidation with Fe(II) as final electron acceptor. In addition, using labelled ((13)C(1)) benzene and toluene we could unambiguously identify intermediates of their respective degradation pathways. We provide evidence for benzene degradation via phenol formation under iron-reducing conditions, whereas toluene and meta-xylene were transformed into the corresponding benzylsuccinates.  相似文献   

11.
Natural attenuation of the mono‐aromates benzene, toluene, ethylbenzene and xylene occurs under iron‐reducing conditions in a leachate‐contaminated aquifer near the Banisveld landfill, the Netherlands. The diversity of mono‐aromate‐degrading microorganisms was studied by targeting functional genes encoding benzylsuccinate synthase α‐subunit (bssA) and 6‐oxocyclohex‐1‐ene‐1‐carbonyl‐CoA hydrolase (bamA). Sixty‐four bssA and 188 bamA variants were sequenced from groundwater sampled along the pollution plume in 1999 and 2004. Species containing bssA sequences closest affiliated (> 91%) with the betaprotebacterium Georgfuchsia toluolica were the dominant alkylbenzene degraders (89% of bssA sequences). bssA genes were found at more than 10‐fold lower copy numbers than bamA genes, of which only a small fraction (< 2%) was closely related to the genes of Georgfuchsia. bamA gene diversity was high and bamA‐based community composition was primarily affected by dissolved organic carbon (DOC) and ferrous iron concentrations. bamA sequences closest related to Geobacteraceae were dominantly (43.2%) observed and the presence of Geobacteraceae‐related bamA sequences was associated with DOC. Our results indicate a key role for specialized Georgfuchsia spp. in the degradation of alkylbenzenes, whereas Geobacteraceae are involved in degradation of aromatics other than toluene and xylene.  相似文献   

12.
An in situ mesocosm system was designed to monitor the in situ dynamics of the microbial community in polluted aquifers. The mesocosm system consists of a permeable membrane pocket filled with aquifer material and placed within a polypropylene holder, which is inserted below groundwater level in a monitoring well. After a specific time period, the microcosm is recovered from the well and its bacterial community is analyzed. Using this system, we examined the effect of benzene, toluene, ethylbenzene, and xylene (BTEX) contamination on the response of an aquifer bacterial community by denaturing gradient gel electrophoresis analysis of PCR-amplified 16S rRNA genes and PCR detection of BTEX degradation genes. Mesocosms were filled with nonsterile or sterile aquifer material derived from an uncontaminated area and positioned in a well located in either the uncontaminated area or a nearby contaminated area. In the contaminated area, the bacterial community in the microcosms rapidly evolved into a stable community identical to that in the adjacent aquifer but different from that in the uncontaminated area. At the contaminated location, bacteria with tmoA- and xylM/xylE1-like BTEX catabolic genotypes colonized the aquifer, while at the uncontaminated location only tmoA-like genotypes were detected. The communities in the mesocosms and in the aquifer adjacent to the wells in the contaminated area consisted mainly of Proteobacteria. At the uncontaminated location, Actinobacteria and Proteobacteria were found. Our results indicate that communities with long-term stability in their structures follow the contamination plume and rapidly colonize downstream areas upon contamination.  相似文献   

13.
The study investigates two functional genes for toluene degradation across three redox conditions (nitrate and sulfate amended and methanogenic). The genes targeted include benzylsuccinate synthase α-subunit (bssA) and a gene recently identified as being a strong indicator of anaerobic aromatic degradation, called 6-oxocylcohex-1-ene-1-carbonyl-CoA hydrolase (bamA). In all, sixteen different anaerobic toluene degrading microcosms were investigated using several primers sets targeting bssA and one primer set targeting bamA. One bssA primer set (7772f/8546r) was the most successful in producing a strong amplicon (eight from sixteen) with the other bssA primers sets producing strong amplicons in six or less samples. In contrast, the bamA primer set (bam-sp9 and bam-asp1) produced a strong amplicon in DNA extracted from all except one microcosm. Partial bssA and bamA sequences were obtained for a number of samples and compared to those available in GenBank. The partial bssA sequences (from nitrate amended and methanogenic microcosms) were most similar to Thauera sp. DNT-1, Thauera aromatica, Aromatoleum aromaticum EbN1 and bssA clones from a study involving sulfate reducing toluene degradation. The bamA sequences obtained could be placed into five previously defined clades (bamA-clade 1, Georgfuchsia/Azoarcus, Magnetospirillum/Thauera Syntrophus and Geobacter clades), with the placement generally depending on redox conditions. Gene numbers were also correlated with toluene degradation and the final gene number for both genes differed considerably between the range of redox conditions. The work is the first in depth investigation of bamA diversity over a range of redox conditions and inoculum sources.  相似文献   

14.
A strictly anaerobic enrichment culture was obtained with p-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. p-Xylene was completely oxidized to CO2. The enrichment culture depended on Fe(II) in the medium as a scavenger of the produced sulfide. 4-Methylbenzylsuccinic acid and 4-methylphenylitaconic acid were identified in supernatants of cultures indicating that degradation of p-xylene was initiated by fumarate addition to one of the methyl groups. Therefore, p-xylene degradation probably proceeds analogously to toluene degradation by Thauera aromatica or anaerobic degradation pathways for o- and m-xylene.  相似文献   

15.
The influence of microbial degradation on the 13C/12C isotope composition of aromatic hydrocarbons is presented using toluene as a model compound. Four different toluene-degrading bacterial strains grown in batch culture with oxygen, nitrate, ferric iron or sulphate as electron acceptors were studied as representatives of different environmental redox conditions potentially prevailing in contaminated aquifers. The biological degradation induced isotope shifts in the residual, non-degraded toluene fraction and the kinetic isotope fractionation factors αC for toluene degradation by Pseudomonas putida (1.0026 ± 0.00017), Thauera aromatica (1.0017 ± 0.00015), Geobacter metallireducens (1.0018 ± 0.00029) and the sulphate-reducing strain TRM1 (1.0017 ± 0.00016) were in the same range for all four species, although they use at least two different degradation pathways. A similar 13C/12C isotope fractionation factor (αC = 1.0015 ± 0.00015) was observed in situ in a non-sterile soil column in which toluene was degraded under sulphate-reducing conditions. No carbon isotope shifts resulting from soil–hydrocarbon interactions were observed in a non-degrading soil column control with aquifer material under the same conditions. The results imply that microbial degradation of toluene can produce a 13C/12C isotope fractionation in the residual hydrocarbon fraction under different environmental conditions.  相似文献   

16.
Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.  相似文献   

17.
Aims: This study intended to unravel the physiological interplay in an anaerobic microbial community that degrades toluene under sulfate‐reducing conditions combining proteomic and genetic techniques. Methods and Results: An enriched toluene‐degrading community (Zz5‐7) growing in batch cultures was investigated by DNA‐ and protein‐based analyses. The affiliation and diversity of the community were analysed using 16S ribosomal RNA (rRNA) genes as a phylogenetic marker as well as bssA and dsrAB genes as functional markers. Metaproteome analysis was carried out by a global protein extraction and a subsequent protein separation by two‐dimensional gel electrophoresis (2‐DE). About 85% of the proteins in the spots were identified by nano‐liquid chromatography coupled with electrospray mass spectrometry (nano‐LC–ESI‐MS/MS) analysis. DNA sequencing of bssA and the most abundant dsrAB amplicons revealed high similarities to a member of the Desulfobulbaceae, which was also predominant according to 16S rRNA gene amplicons. Metaproteome analysis provided 202 unambiguous protein identifications derived from 236 unique protein spots. The proteins involved in anaerobic toluene activation, dissimilatory sulfate reduction, hydrogen production/consumption and autotrophic carbon fixation were mainly affiliated to members of the Desulfobulbaceae and several other Deltaproteobacteria. Conclusion: Phylogenetic and metaproteomic analyses revealed a member of the Desulfobulbaceae as the key player of anaerobic toluene degradation in a sulfate‐reducing consortium. Significance and Impact of the Study: This is the first study that combines genetic and proteomic analyses to indicate the interactions in an anaerobic toluene‐degrading microbial consortium.  相似文献   

18.
A sulfate-reducing bacterial consortium was enriched from an anoxic aquifer contaminated with BTEX compounds, using toluene as a growth substrate. Total cell counts, protein contents and sulfide production were determined to follow growth at the in situ temperature (14 °C) and at 25 °C, respectively. Community members were identified by 16S rRNA gene cloning and sequencing. Phylogenetic analysis revealed 12 sequence types belonging to Deltaproteobacteria (several groups) , Epsilonproteobacteria, Bacteroidetes, Spirochaetaceae and an unclassified bacterial clade. The most prominent phylotype comprising 34% of all clones was affiliated to the Desulfobulbaceae and closely related to environmental clones retrieved from hydrocarbon-contaminated aquifers. Flow-cytometric methods were applied to analyze the community dynamics and to identify key organisms involved in toluene assimilation. Flow-cytometric measurement of DNA contents and scatter behavior served to detect and quantify dominant and newly emerging clusters of subcommunities. Up to seven subcommunities, two of them dominant, were distinguished. Cell sorting was used to facilitate the analysis of conspicuous clusters for phylogenetic identity by terminal restriction fragment length polymorphism profiling of the 16S rRNA genes. The Desulfobulbaceae phylotype accounted for up to 87% in proliferating subcommunities, indicating that it represents the key organism of toluene degradation within this complex anaerobic consortium.  相似文献   

19.
A p-xylene-degrading, sulfate-reducing enrichment culture was characterized by analyzing the response of its members to changes in the available substrate. The culture was inoculated into media containing other substrates, resulting in the establishment of benzoate-, acetate-, and lactate-utilizing enrichment cultures. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the enriched cultures targeting 16S rRNA genes showed quite simple band patterns. The predominant band from the benzoate-utilizing enrichment culture was identical to that from the original enrichment culture utilizing p-xylene. A single, dominant DGGE band was observed in common from the acetate- and lactate-utilizing enrichment cultures. A novel sulfate-reducing bacterium, strain PL12, was isolated from the lactate-utilizing enrichment culture. The 16S rRNA gene sequence of strain PL12 was identical to that of the dominant DGGE band in the acetate- and lactate-utilizing enrichment cultures and distinct from the dominant sequences in the original p-xylene-degrading and benzoate-utilizing enrichment cultures. Phylogenetic analysis of the 16S rRNA gene sequences showed that the isolate belonged to the family Desulfobacteraceae in the class Deltaproteobacteria. The isolated strain PL12 could utilize n-hexane and n-decane as substrates, but could not utilize benzoate, p-xylene and other aromatic hydrocarbons. These results suggest that the p-xylene degradation observed in the original enrichment culture was performed by the dominant bacterium corresponding to DGGE band pXy-K-13 (Nakagawa et al. 2008). The novel strain PL12 might have been utilizing metabolites of p-xylene.  相似文献   

20.
Benzylsuccinate synthase (Bss) is the key enzyme of anaerobic toluene degradation and has been found in all anaerobic toluene degrading bacterial isolates tested. However, only a few pure cultures capable of anaerobic toluene oxidation are available to date, and it is important to understand the relevance of these model organisms for in situ bioremediation of hydrocarbon-contaminated aquifers. Due to their phylogenetic dispersal, it is not possible to specifically target anaerobic toluene degraders using marker rRNA genes. We therefore established an assay targeting a approximately 794 bp fragment within the Bss alpha-subunit (bssA) gene, which allows for the specific detection and affiliation of both known and unknown anaerobic degraders. Three distinct tar-oil-contaminated aquifer sites were screened for intrinsic bssA gene pools in order to identify and compare the diversity of hydrocarbon degraders present at these selected sites. We were able to show that local diversity patterns of degraders were entirely distinct, apparently highly specialized and well-adapted to local biogeochemical settings. Discovered at one of the sites were bssA genes closely related to that of Geobacter spp., which provides evidence for an importance of iron reduction for toluene degradation in these sediments. Retrieved from the other two sites, dominated by sulfate reduction, were previously unidentified bssA genes and also deeply branching putative bssA homologues. We provide evidence for a previously unrecognized diversity of anaerobic toluene degraders and also of other hydrocarbon degraders using fumarate-adding key reactions in contaminated aquifers. These findings enhance our current understanding of intrinsic hydrocarbon-degrading microbial communities in perturbed aquifers and may have potential for the future assessment and prediction of natural attenuation based on degradation genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号