首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, reproduction, especially for females is energetically demanding. Therefore, during the reproductive period females could potentially adjust patterns of thermoregulation and foraging in concert to minimise the energetic constraints associated with pregnancy and lactation. We assessed the influence of pregnancy, lactation, and post-lactation on torpor use and foraging behaviour by female little brown bats, Myotis lucifugus. We measured thermoregulation by recording skin temperature and foraging by tracking bats which carried temperature-sensitive radio-tags. We found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females. As we predicted, reproductive females entered torpor for shorter bouts than post-lactating females. Although all females used torpor frequently, pregnant females spent less time in torpor, and maintained higher skin temperatures than either lactating or post-lactating females. This result suggests that delayed offspring development which has been associated with torpor use during pregnancy, may pose a higher risk to an individual’s reproductive success than reduced milk production during lactation. Conversely, foraging behaviour of radio-tagged bats did not vary with reproductive condition, suggesting that even short, shallow bouts of torpor produce substantial energy savings, likely obviating the need to spend more time foraging. Our data clearly show that torpor use and reproduction are not mutually exclusive and that torpor use (no matter how short or shallow) is an important means of balancing the costs of reproduction for M. lucifugus.  相似文献   

2.
The frequency and function of arousals during hibernation in free-living mammals are little known. We used temperature-sensitive radio transmitters to measure patterns of torpor, arousal and activity in wild Natterer’s bats Myotis nattereri during hibernation. Duration of torpor bouts ranged from 0.06 to 20.4 days with individual means ranging from 0.9 to 8.9 days. Arousals from torpor occurred most commonly coincident with the time (relative to sunset) typical for bats emerging from summer roosts to forage. Bats with lower body condition indices had a shorter average duration of their torpor bouts. We found a non-linear relationship between duration of torpor bout and ambient temperature: the longest average torpor bouts were at temperatures between 2 and 4°C with shorter bouts at lower and higher ambient temperatures. One individual was radio-tracked for ten nights, remained active for an average of 297 min each night and was active for longer on warmer nights. Our results suggest that vespertilionid bats use relatively short torpor bouts during hibernation in a location with a maritime climate. We hypothesise that Natterer’s bats time arousals to maximise opportunities for potential foraging during winter although winter feeding is not the sole determinant of arousal as bats still arouse at times when foraging is unlikely.  相似文献   

3.
Hibernation by tree-roosting bats   总被引:1,自引:1,他引:0  
In summer, long-eared bats (Nyctophilus spp.) roost under bark and in tree cavities, where they appear to benefit from diurnal heating of roosts. In contrast, hibernation is thought to require a cool stable temperature, suggesting they should prefer thermally insulated tree cavities during winter. To test this prediction, we quantified the winter thermoregulatory physiology and ecology of hibernating tree-roosting bats, Nyctophilus geoffroyi and N. gouldi in the field. Surprisingly, bats in winter continued to roost under exfoliating bark (65%) on the northern, sunny side of trees and in shallow tree cavities (35%). Despite passive re-warming of torpid bats by 10-20 degrees C per day, torpor bouts lasted up to 15 days, although shorter bouts were also common. Arousals occurred more frequently and subsequent activity lasted longer on warmer nights, suggesting occasional winter foraging. We show that, because periodic arousals coincide with maximum roost temperatures, when costs of rewarming and normothermic thermoregulation are minimal, exposure to a daily temperature cycle could largely reduce energy expenditure during hibernation. Our study provides further evidence that models of torpor patterns and energy expenditure from hibernators in cold temperate climates are not directly applicable in milder climates, where prolonged torpor can be interspersed with more frequent arousals and occasional foraging.  相似文献   

4.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

5.
A free-ranging maternity colony of big brown bats Eptesicus fuscus roosting in rock crevices along the South Saskatchewan River in south-eastern Alberta, Canada, was studied to understand better the discrepancy that exists in the literature regarding torpor use by reproductive female bats. Using radio-telemetry, thermoregulatory patterns and roost microclimate were recorded for pregnant, lactating and post-lactating females. Relative torpor use is described in several ways: the proportion of days on which torpor was used, depth, minimum body temperature, time spent in torpor, and a comprehensive torpor unit (degree-min). Pregnant and lactating female E. fuscus used torpor to the same extent overall (degree-min), but pregnant bats used torpor less frequently and with more time in deep torpor. Torpor was used to the greatest extent after weaning (post-lactation). Evidence is presented that the cost:benefit ratio for deep and prolonged periods of torpor may be highest during lactation. Microclimates of rock-crevice roosts mirrored the use of torpor throughout reproduction by bats. Lactation roosts (deeper, larger opening size) were more thermally stable and remained warmer at night compared to the shallow roosts used by pregnant and post-lactating females. It is shown that conclusions about relative use of torpor can differ depending on the units of comparison, necessitating measurement of all aspects of torpor (depth, duration and frequency). Comprehensive measurements, individual-based normothermic temperatures, and a definition of torpor that accounts for all energy savings, allow a more accurate depiction of patterns and facilitates inter-study comparisons.  相似文献   

6.
Temperate zone bats can use daily torpor as a means of saving energy. Some argue, however, that torpor is costly for both males and females and that individuals should only use it during times of poor foraging conditions. Others hypothesize that the costs are greater for females and that males should enter torpor more regularly. We tested these alternative hypotheses by using temperature-sensitive radiotransmitters to monitor use of torpor and foraging by free-ranging big brown bats ( Eptesicus fuscus ). During the pregnancy period, males used torpor at night more and foraged less often than did females. Males also went into deep torpor more often and remained in torpor longer than did females. When they foraged, males and females were away from the roosts for equal periods of time. During the lactation period, males and females rarely failed to forage and foraging times were again no different between the sexes, although males may roost at night away from the maternity colonies. Males again used torpor and deep torpor more often and for longer than females did. These results support the hypothesis that the fitness costs of using torpor are lower for males than for reproductive females and that males regularly use torpor as an energy-saving mechanism. Females enter torpor only when foraging conditions are poor, presumably because torpor prolongs gestation and slows neonatal growth thereby leaving less time for females and their young to prepare for hibernation.  相似文献   

7.
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010–2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one “morning” torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.  相似文献   

8.
Bats in temperate and subtropical regions typically synchronize birth of a single young with peaks in resource availability driven by local climate patterns. In tropical rain forest, insects are available throughout the year, potentially allowing departures from seasonal monoestry. However, reproductive energy budgets may be constrained by the cost of commuting to foraging grounds from distant roosts. To test these hypotheses, we simultaneously tracked female reproductive activity of 11 insectivorous bat species, insect biomass, and local weather variables for 20 months in a Malaysian rain forest. Five species roost in forest structures and hence have low commuting costs, whereas six species depend on caves, which are limited in the landscape, and are presumed to incur higher commuting costs to foraging sites. Monthly insect biomass was positively correlated with monthly rainfall, and there was a significant relationship between insect biomass and lactation in cave‐roosting but not forest‐roosting species. Cave‐roosting species were seasonally monoestrus, with parturition confined to a two‐month period, whereas in forest‐roosting species, pregnancy and lactation were recorded throughout the year. Our results suggest that the energetic costs of commuting from roosts to foraging grounds shape annual reproductive patterns in tropical rain forest insectivorous bats. Ongoing changes in forest landscapes are likely to increase these costs for cave‐roosting bats, further restricting reproductive opportunities. Climate change is projected to influence the timing of rainfall events in many tropical habitats, which may disrupt relationships between rainfall, insect biomass, and bat reproductive timing, further compromising reproductive success.  相似文献   

9.
A growing number of mammal species are recognized as heterothermic, capable of maintaining a high‐core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big‐eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day‐roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day‐roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context.  相似文献   

10.
Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future migration studies of both bats and birds.  相似文献   

11.
Summary The insectivorous bat Myotis lucifugus typically apportions the night into two foraging periods separated by an interval of night roosting. During this interval, many bats occupy roosts that are used exclusively at night and are spatially separate from maternity roosts. The proportion of the night which bats spend roosting, and thus the proportion spent foraging, vary both daily and seasonally in relation to the reproductive condition of the bats, prey density, and ambient temperature. A single, continuous night roosting period is observed during pregnancy. During lactation, females return to maternity roosts between foraging bouts, and night roosts are used only briefly and sporadically. Maximum use of night roosts occurs in late summer after young become volant. Superimposed upon these seasonal trends is day-to-day variation in the bats' nightly time budget. Long night roosting periods and short foraging periods are associated with cool nights and low prey density. This behavioral response may minimize energetic losses during periods of food scarcity.  相似文献   

12.
Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; <5 °C). First Tflow movements appeared at the beginning of March and often occurred during long torpor bouts. In most cases, Tflow events represented slow displacements between clusters of bats. In several cases, however, departure or arrivals from and into clusters was also recorded without any elevation in body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject.  相似文献   

13.
Little is known about the use of heterothermy by wild bats during summer, especially for tree-roosting species. Because thermal conditions within tree roosts can fluctuate widely with ambient temperature, which affects thermoregulatory energy expenditure during diurnal roosting, we measured skin temperatures of free-ranging male Nyctophilus geoffroyi (8 g) to quantify the relation between summer torpor use and roost thermal conditions. Bats roosted under bark on the northern (sunny) side of trees and entered torpor every day, usually near sunrise. Bats exhibited two bouts of torpor on most days: the first occurred in the morning, was terminated by partially passive rewarming, and was followed by a period of normothermy during the warmest part of the day; a second torpor bout occurred in the late afternoon, with arousal near sunset. On the warmest days, bats had only a single, short morning bout. On the coolest days, bats remained torpid throughout the day, and one 2-d bout was observed. Thus, presumably owing to their poorly insulated roosts and the high energetic cost of normothermy at temperatures below 30 degrees C, the extent and timing of heterothermy was closely related to the cycle of diurnal temperatures. Our study indicates that torpor use is important for energy maintenance during summer diurnal roosting of N. geoffroyi and likely of other small, tree-roosting bats.  相似文献   

14.
Many small mammals are heterothermic endotherms capable of maintaining an elevated core body temperature or reducing their thermoregulatory set point to enter a state of torpor. Torpor can confer substantial energy savings, but also incurs ecological costs, such as hindering allocation of energy towards reproduction. We placed temperature-sensitive radio transmitters on 44 adult Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and deployed microclimate dataloggers inside 34 day roosts to compare the use of torpor by different sex and reproductive classes of bats during the summer. We collected 324 bat-days of skin-temperature data from 36 females and 4 males. Reproductive females employed fewer torpor bouts per day than non-reproductive females and males (P < 0.0001), and pregnant and lactating females had higher average (P < 0.0001) and minimum (P < 0.0001) skin temperatures than non-reproductive females. Pregnant females spent less time torpid (P < 0.0001) than non-reproductive females, but lactating females used relatively deep, long torpor bouts. Microclimates varied inside tree species with different configurations of entrances to the roost cavity (P < 0.0001). Bats spent more time torpid when roosting in water tupelo (Nyssa aquatica) trees possessing only a basal entrance to the cavity (P = 0.001). Of the tree species used as roosts, water tupelo cavities exhibited the least variable daytime and nighttime temperatures. These data demonstrate that use of summer torpor is not uniform among sex and reproductive classes in Rafinesque’s big-eared bat, and variation in microclimate among tree roosts due to species and structural characteristics facilitates the use of different thermoregulatory strategies in these bats.  相似文献   

15.
During times of energetic stress many small mammals reduce their body temperature and metabolic rate, a state known as torpor. Whereas torpor is effective in energy conservation it also entails costs, such as reduced foetal development in pregnant females. Because it is currently not known how subtropical bats deal with energetic challenges during the reproductive season, the thermal biology of free-ranging non-reproductive male and pregnant female Nyctophilus bifax was examined during spring. Males entered torpor much more frequently than pregnant females. However, night time activity periods were similar in both sexes. My results show that even in the subtropics torpor is used regularly during the reproductive period in spring by non-reproductive male N. bifax to conserve energy, but is used rarely by pregnant females likely to prevent slowed foetal development.  相似文献   

16.
Although roost choice in bats has been studied previously, little is known about how opposing roost colours affect the expression of torpor quantitatively. We quantified roost selection and thermoregulation in a captive Australian insectivorous bat, Nyctophilus gouldi (n=12) in winter when roosting in black and white coloured boxes using temperature-telemetry. We quantified how roost choice influences torpor expression when food was provided ad libitum or restricted in bats housed together in an outdoor aviary exposed to natural fluctuations of ambient temperature. Black box temperatures averaged 5.1 °C (maximum 7.5 °C) warmer than white boxes at their maximum daytime temperature. Bats fed ad libitum chose black boxes on most nights (92.9%) and on 100% of nights when food-restricted. All bats used torpor on all study days. However, bats fed ad libitum and roosting in black boxes used shorter torpor and spent more time normothermic/active at night than food-restricted bats and bats roosting in white boxes. Bats roosting in black boxes also rewarmed passively more often and to a higher skin temperature than those in white boxes. Our study suggests that N. gouldi fed ad libitum select warmer roosts in order to passively rewarm to a higher skin temperature and thus save energy required for active midday rewarming as well as to maintain a normothermic body temperature for longer periods at night. This study shows that colour should be considered when deploying bat boxes; black boxes are preferable for those bats that use passive rewarming, even in winter when food availability is reduced.  相似文献   

17.
During roosting in summer, reproductive female bats appear to use torpor less frequently and at higher body temperatures (T b) than male bats, ostensibly to maximise offspring growth. To test whether field observations result from differences in thermal physiology or behavioural thermoregulation during roosting, we measured the thermoregulatory response and energetics of captive pregnant and lactating female and male long-eared bats (Nyctophilus geoffroyi 8.9 g and N. gouldi 11.5 g) during overnight exposure to a constant ambient temperature (T a) of 15°C. Bats were captured 1–1.5 h after sunset and measurements began at 21:22±0:36 h. All N. geoffroyi entered torpor commencing at 23:47±01:01 h. For N. gouldi, 10/10 males, 9/10 pregnant females and 7/8 lactating females entered torpor commencing at 01:10±01:40 h. The minimum T b of torpid bats was 15.6±1.1°C and torpid metabolic rate (TMR) was reduced to 0.05±0.02 ml O2 g−1 h−1. Sex or reproductive condition of either species did not affect the timing of entry into torpor (F=1.5, df=2, 19, P=0.24), minimum TMR (F=0.21, df=4, 40, P=0.93) or minimum T b (F=0.76, df=5, 41, P=0.58). Moreover, sex or reproductive condition did not affect the allometric relationship between minimum resting metabolic rate and body mass (F=1.1, df=4, 37, P=0.37). Our study shows that under identical thermal conditions, thermal physiology of pregnant and lactating female and male bats are indistinguishable. This suggests that the observed reluctance by reproductive females to enter torpor in the field is predominantly because of ecological rather than physiological differences, which reflect the fact that females roost gregariously whereas male bats typically roost solitarily.  相似文献   

18.
Seasonal changes in weather and food availability differentially impact energy budgets of small mammals such as bats. While most thermal physiological research has focused on species that experience extreme seasonal temperature variations, knowledge is lacking from less variable temperate to subtropical climates. We quantified ambient temperature (T a) and skin temperature (T sk) responses by individuals from a population of New Zealand lesser short-tailed bats (Mystacina tuberculata) during summer and winter using temperature telemetry. During summer, communal roosts were more thermally stable than T a. During winter, solitary roosts were warmer than T a indicating significant thermal buffering. Communal roost trees were used on 83 % of observation days during summer, and individuals occupying them rarely entered torpor. Solitary roosts were occupied on 93 % of observation days during winter, and 100 % of individuals occupying them used torpor. During summer and winter, bats employed torpor on 11 and 95 % of observation days, respectively. Maximum torpor bout duration was 120.8 h and winter torpor bout duration correlated negatively with mean T a. Torpor bout duration did not differ between sexes, although female minimum T sk was significantly lower than males. The summer Heterothermy Index varied, and was also significantly affected by T a. Mean arousal time was correlated with sunset time and arousals occurred most frequently on significantly warmer evenings, which are likely associated with an increased probability of foraging success. We provide the first evidence that torpor is used flexibly throughout the year by M. tuberculata, demonstrating that roost choice and season impact torpor patterns. Our results add to the growing knowledge that even small changes in seasonal climate can have large effects on the energy balance of small mammals.  相似文献   

19.
Little is known about how animals from tropical and subtropical climates adjust their energy expenditure to cope with seasonal changes of climate and food availability. To provide such information, we studied the thermal physiology, torpor patterns and energetics of the nocturnal blossom-bat (Syconycteris australis 18 g) from a subtropical habitat in both summer and winter. In both seasons, S. australis frequently entered daily torpor at ambient temperatures between 12 and 25°C when food and water were withheld. Unlike patterns observed in temperate animals, mean minimum metabolic rates during torpor were lower in summer (0.47 ± 0.07 ml O2 g−1 h−1) than in winter (0.75 ± 0.11 ml O2 g−1 h−1). Body temperatures during torpor were regulated at 19.3 ± 1.0°C in summer and at 23.4 ± 2.0°C in winter. Torpor bout duration was significantly longer in summer (7.3 ± 0.6 h) than in winter (5.5 ± 0.3 h), but in both seasons, bout duration was not affected by ambient temperature. Consequently, average daily metabolic rates were also significantly lower in summer than in winter. Body temperatures and metabolic rates in normothermic bats did not change with season. Our findings on seasonal changes of torpor in this bat from the subtropics are opposite to those made for many species from cold climates which generally show deeper and longer torpor in winter and are often entirely homeothermic in summer. More pronounced torpor in subtropical S. australis in summer may be due to low or unpredictable nectar availability, short nights which limit the time available for foraging, and long days without access to food. Thus, the reversed seasonal response of this subtropical bat in comparison to temperate species may be an appropriate response to ecological constraints. Received: 6 May 1997 / Accepted: 19 October 1997  相似文献   

20.
为研究冬眠季节的光照条件对贮脂类冬眠动物入眠的影响,在达乌尔黄鼠腹腔埋植体温记录元件iButton,在体重高峰后的下降阶段置于5℃和12L:12D的光照条件下,观察测定其冬眠模式和能量消耗。达乌尔黄鼠冬眠模式出现深冬眠型、少冬眠型和不冬眠型,蛰眠阵包括深冬眠阵、短冬眠阵和日眠阵。不同冬眠阵中最低体温、冬眠阵的持续时间、阵间产热的持续时间、冷却速率和复温速率差异显著;阵间产热的最高体温基本相同。平均每日能量消耗在日眠阵中最高、短冬眠阵中居中、深冬眠阵中最低。入眠时间多集中于黑暗时相,觉醒时间多集中于光照时相。本实验结果提示,在冬眠季节施加光照黑暗循环条件可减少达乌尔黄鼠冬眠的时间,升高阵间最低体温,缩短冬眠阵与阵间产热的持续时间,降低复温速率;增加冬眠期间能量消耗。入眠与觉醒受光照条件影响,具有明显的光暗节律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号