首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thinopyrum intermedium (2n = 6x = 42, JJJsJsSS) is potentially a useful source of resistance to wheat streak mosaic virus (WSMV) and its vector, the wheat curl mite (WCM). Five partial amphiploids, namely Zhong 1, Zhong 2, Zhong 3, Zhong 4, and Zhong 5, derived from Triticum aestivum x Thinopyrum intermedium crosses produced in China, were screened for WSMV and WCM resistance. Zhong 1 and Zhong 2 had high levels of resistance to WSMV and WCM. The other three partial amphiploids, Zhong 3, 4, and 5, were resistant to WSMV, but were susceptible to WCM. Genomic in situ hybridization (GISH) using a genomic DNA probe from Pseudoroegneria strigosa (SS, 2n = 14) demonstrated that two partial amphiploids, Zhong 1 and Zhong 2, have almost the identical 10 Th. intermedium chromosomes, including four Js, four J, and two S genome chromosomes. Both of them carry two pairs of J and a pair of Js genome chromosomes and two different translocations that were not observed in the other three Zhong lines. The partial amphiploids Zhong 3, 4, and 5 have another type of basic genomic composition, which is similar to a reconstituted alien genome consisting of four S and four Js genome chromosomes of Th. intermedium (Zhong 5 has two Js chromosomes plus two Js-W translocations) with six translocated chromosomes between S and Js or J genomes. All three lines carry a specific S-S-Js translocated chromosome, which might confer resistance to barley yellow dwarf virus (BYDV-PAV). The present study identified a specific Js2 chromosome present in all five of the Zhong lines, confirming that a Js chromosome carries WSMV resistance. Resistance to WCM may be linked with J or Js chromosomes. The discovery of high levels of resistance to both WSMV and WCM in Zhong 1 and Zhong 2 offers a useful source of resistance to both the virus and its vector for wheat breeding programs.  相似文献   

2.
Thinopyrum elongatum serves as an excellent gene pool for wheat improvement. Genes for resistance to many biotic and abiotic stresses have been transferred from Th. elongatum to wheat through chromosome manipulation. For breeding programs, molecular markers enable screening of a large number of genotypes for alien chromosome introgressions. The main objective of the present study was to develop and characterize EST (expressed sequence tags) and PLUG (PCR-based Landmark Unique Gene) markers that can distinguish Th. elongatum chromatin from the wheat genomes. A total of 258 mapped EST primer pairs and 46 PLUG primer pairs were tested on DNA from wheat Chinese Spring (CS) and CS-Th. elongatum addition lines. The results showed that 43 primer pairs could be effectively mapped to specific Th. elongatum chromosomes. Twenty-two of the 43 markers displayed similar homoeologous chromosome locations to hexaploid wheat. Nine markers mapped to different linkage groups between wheat and Th. elongatum, while 12 makers mapped on two or three different Th. elongatum chromosomes. A comparison of molecular marker locations indicated that Th. elongatum genome was closely related to the D genome of wheat, and chromosome rearrangements and duplication had occurred in Th. elongatum and the wheat genomes. The markers will be useful in comparative gene mapping, chromosome evolutionary analysis, and gene introgression for wheat improvement using Th. elongatum accessions as gene donors.  相似文献   

3.
 Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM), is one of the most important viral diseases of wheat (Triticum aestivum) in the world. Genetic resistance to WSMV and the WCM does not exist in wheat. Resistance to WSMV and the WCM was evaluated in five different partial amphiploids namely Agrotana, OK7211542, ORRPX, Zhong 5 and TAF 46, which were derived from hybrids of wheat with decaploid Thinopyrum ponticum or with hexaploid Th. intermedium. Agrotana was shown to be immune to WSMV and the WCM; the other four partial amphiploids were susceptible to the WCM. Genomic in situ hybridization (GISH) using genomic DNA probes from Th. elongatum (EE, 2n=14), Th. bessarabicum (JJ, 2n=14), Pseudoroegneria strigosa (SS, 2n=14) and T. aestivum (AABBDD, 2n=42) demonstrated that three of the partial amphiploids, Agrotana, OK7211542 and ORRPX, have almost identical alien genome constitutions: all have 16 alien chromosomes, with 8 chromosomes being closely related to the Js genome and 8 chromosomes belonging to the E or J genomes and no evidence of any S-genome chromosomes. GISH confirmed that the alien genomes of Agrotana and OK7211542, like ORRPX, were all derived from Th. ponticum, and not from Th. intermedium. However, in contrast to Agrotana, ORRPX and OK7211542 were susceptible to the WCM and WSMV. The partial amphiploid Zhong 5 had a reconstituted alien genome composed of 4 S-and 4 Js-genome chromosomes of Th. intermedium with 6 translocated chromosomes between the S and Js genomes. This line was highly resistant to WSMV, but was susceptible to the WCM. TAF 46, which contained a synthetic genome consisting of 3 pairs of S-genome chromosomes and 4 pairs of E- or J-genome chromosomes in addition to the 21 pairs of wheat chromosomes, was susceptible to the WCM, but moderately resistant to WSMV. Agrotana offers great potential for transferring WSMV and WCM resistance into wheat. Received: 27 January 1998 / Accepted: 10 February 1998  相似文献   

4.
The survival of the wheat curl mite (WCM), Aceria tosichilla Keifer, on five sources of resistant wheat (Triticum aestivum L.) was determined for collections of mites from Kansas (including a strain adapted to TAM 107), South Dakota and Texas, USA and Alberta, Canada. Sources of resistance to Aegilops squarrosa L. and Agropyron elongatum (Host) were resistant to WCMs from South Dakota and Alberta, but susceptible to WCMs from Kansas and Texas. Two wheats with resistance to rye (Secale cereale L.), PI 475772 and TAM 107, were resistant to all WCM collections except the strain from Kansas that was selected for adaptation to TAM 107. A common wheat (PI 222655) was resistant to all WCM collections except the one from Alberta, Canada. Because WCMs have overcome the resistance of TAM 107 in Kansas, the only resistance now available in commercial cultivars may be lost. Results indicate that PI222655 is the best source of resistance to replace TAM 107 in the USA but it may not be effective in Canada. Resistance to Ae. squarrosa and A. elongatum could be deployed against WCMs in Alberta and South Dakota but these sources may not be effective in Kansas and Texas. However, one WCM collection from each location may not represent the general mite population of an area. Therefore, any new sources of resistance should be evaluated fully against WCMs from areas where they are likely to be used in commercial cultivars.  相似文献   

5.
《遗传学报》2014,41(11):591-599
Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.) Barkworth & D. R. Dewey are important intermediates in wheat breeding because of their resistance to major wheat diseases. In this study, we examined the chromosome compositions of five Xiaoyan-series wheat−Th. ponticum partial amphiploids (Xiaoyan 68, Xiaoyan 693, Xiaoyan 784, Xiaoyan 7430, and Xiaoyan 7631) using GISH, multicolor-GISH, and multicolor-FISH. We found several chromosome changes in these lines. For example, wheat chromosomes 1B and 2B were added in Xiaoyan 68 and Xiaoyan 7430, respectively, while wheat chromosome 6B was eliminated from Xiaoyan 693 and Xiaoyan 7631. Chromosome rearrangements were also detected in these amphiploids, including an interspecific translocation involving chromosome 4D and some intergenomic translocations, such as A–B and A–D translocations, among wheat genomes. Analysis of the Th. ponticum chromosomes in the amphiploids showed that some lines shared the same alien chromosomes. We also evaluated these partial amphiploids for resistance to nine races of stem rust, including TTKSK (commonly known as Ug99). Three lines, Xiaoyan 68, Xiaoyan 784, and Xiaoyan 7430, exhibited excellent resistance to all nine races, and could therefore be valuable sources of stem rust resistance in wheat breeding.  相似文献   

6.
Thinopyrum intermedium is a useful source of resistance genes for Barley Yellow Dwarf Virus (BYDV), one of the most damaging wheat diseases. In this study, wheat/Th. intermedium translocation lines with a BYDV resistance gene were developed using the Th. intermedium 7Ai-1 chromosome. Genomic in situ hybridization (GISH), using a Th. intermedium total genomic DNA probe, enabled detection of 7Ai-1-derived small chro-matins containing a BYDV resistance gene, which were translocated onto the end of wheat chromosomes in the lines Y95011 and Y960843. Random amplified polymorphic DNA (RAPD) analyses using 120 random 10-mer primers were conducted to compare the BYDV-resistant translocation lines with susceptible lines. Two primers amplified the DNA fragments specific to the resistant line that would be useful as molecular markers to identify 7Ai-1-derived BYDV resistance chromatin in the wheat genome. Additionally, the isolated Th. intermedium-specific retrotransposon-like sequence pTi28 can be used to identify Th. intermedium chromatin transferred to the wheat genome.  相似文献   

7.
Li  Jianbo  Lang  Tao  Li  Bin  Yu  Zhihui  Wang  Hongjin  Li  Guangrong  Yang  Ennian  Yang  Zujun 《Planta》2017,245(6):1121-1135
Main conclusion

Fluorescence in situ hybridization and molecular markers have confirmed that several chromosomes from Thinopyrum intermedium ssp. trichophorum have been added to a wheat background, which originated from a cross between a wheat– Thinopyrum partial amphiploid and triticale. The lines displayed blue grains and resistance to wheat stripe rust.

Thinopyrum intermedium has been used as a valuable resource for improving the disease resistance and yield potential of wheat. With the aim to transfer novel genetic variation from Th. intermedium species for sustainable wheat breeding, a new trigeneric hybrid was produced by crossing an octoploid wheat–Th. intermedium ssp. trichophorum partial amphiploid with hexaploid triticale. Fluorescence in situ hybridization (FISH) revealed that Thinopyrum chromosomes were transmitted preferably and the number of rye chromosomes tended to decrease gradually in the selfed derivatives of the trigeneric hybrids. Four stable wheat–Th. intermedium chromosome substitution, addition and translocation lines were selected, and a 2JS addition line, two substitution lines of 4JS(4B) and 4J(4B), and a small 4J.4B translocation line were identified by FISH and molecular markers. It was revealed that the gene(s) responsible for blue grains may located on the FL0.60–1.00 of long arm of Th. intermedium-derived 4J chromosome. Disease resistance screenings indicated that chromosomes 4JS and 2JS appear to enhance the resistance to stripe rust in the adult plant stage. The new germplasm with Th. intermedium introgression shows promise for utilization of Thinopyrum chromosome segments in future wheat improvement.

  相似文献   

8.
Wheat-Haynaldia villosa (L.) Schur, hybrid lines were tested as potential sources of resistance to colonization by the wheat curl mite, the vector of wheat streak mosaic virus. Two lines, Add 6V-1 and Sub 6V-1, were found to be mite-resistant. Fluorescence in situ hybridization using total genomic DNA, from H. villosa in the presence of unlabelled wheat DNA, confirmed that Add 6V-1 is a disomic wheat-H. villosa chromosome addition line. Sub 6V-1 turned out to be a homoeologous wheat-H. villosa chromosome translocation line rather than a substitution. The translocation in Sub 6V-1 occurred between a wheat chromosome and a chromosome from H. villosa through Robertsonian fusion of misdivided centromeres. Only the short arm of the group 6 chromosome of H. villosa was involved in the genetic control of mite resistance, a conclusion based on the genomic in situ hybridization signal and specific DNA fragments obtained by polymerase chain reaction.LRC Contribution No. 3879542  相似文献   

9.
The wheat curl mite (WCM) is a major pest in cereal crops around the world and the vector of at least four known pathogens capable of reducing yields in crops such as wheat, corn, barley, oats, millet and rye. Current taxonomy recognizes WCM as a single species, Aceria tosichella; however, recent genetic, physiological and ecological studies have shown that WCM is likely to be a species complex. In this study we assessed genetic variation and phylogenetic relationships among WCM from four continents and a wide range of host plants using DNA sequence data from one mitochondrial gene, one nuclear gene and a single nuclear intergenic spacer region. Phylogenetic analyses revealed 11 unique mite lineages associated with specific plant hosts including wheat and barley. Host associations were consistent across continents, often with a single haplotype dominating a host plant regardless of geographic origin. The genetic and ecological differences identified in this study support the notion that WCM is a species complex in need of major taxonomic revision. These findings have implications for control of WCM globally, particularly within the context of identifying plants that form ‘green bridge’ refuges, assessing disease transmission risk, and identifying resistance in cereal genotypes to WCM and associated pathogens.  相似文献   

10.
Soilborne pathogens such as cereal cyst nematode (CCN; Heterodera avenae) and root lesion nematode (Pratylenchus neglectus; PN) cause substantial yield losses in the major cereal-growing regions of the world. Incorporating resistance into wheat cultivars and breeding lines is considered the most cost-effective control measure for reducing nematode populations. To identify loci with molecular markers linked to genes conferring resistance to these pathogens, we employed a genome-wide association approach in which 332 synthetic hexaploid wheat lines previously screened for resistance to CCN and PN were genotyped with 660 Diversity Arrays Technology (DArT) markers. Two sequence-tagged site markers reportedly linked to genes known to confer resistance to CCN were also included in the analysis. Using the mixed linear model corrected for population structure and familial relatedness (Q+K matrices), we were able to confirm previously reported quantitative trait loci (QTL) for resistance to CCN and PN in bi-parental crosses. In addition, we identified other significant markers located in chromosome regions where no CCN and PN resistance genes have been reported. Seventeen DArT marker loci were found to be significantly associated with CCN and twelve to PN resistance. The novel QTL on chromosomes 1D, 4D, 5B, 5D and 7D for resistance to CCN and 4A, 5B and 7B for resistance to PN are suggested to represent new sources of genes which could be deployed in further wheat improvement against these two important root diseases of wheat.  相似文献   

11.
Thinopyrum intermedium is a promising source of resistance to wheat streak mosaic virus (WSMV), a devastating disease of wheat. Three wheat germplasm lines possessing resistance to WSMV, derived from Triticum aestivum×Th. intermedium crosses, are analyzed by C-banding and genomic in situ hybridization (GISH) to determine the amount and location of alien chromatin in the transfer lines. Line CI15092 was confirmed as a disomic substitution line in which wheat chromosome 4A was replaced by Th. intermedium chromosome 4Ai?2. The other two lines, CI17766 and A29-13-3, carry an identical Robertsonian translocation chromosome in which the complete short arm of chromosome 4Ai?2 was transferred to the long arm of wheat chromosome 4A. Fluorescence in situ hybridization (FISH) using ABD genomic DNA from wheat as a probe and S genomic DNA from Pseudoroegneria stipifolia as the blocker, and vice versa, revealed that the entire short arm of the translocation was derived from the short arm of chromosome 4Ai?2 and the breakpoint was located at the centromere. Chromosomal arm ratios (L/S) of 2.12 in CI17766 and 2.15 in A29-13-3 showed that the translocated chromosome is submetacentric. This translocated chromosome is designated as T4AL?? 4Ai?2S as suggested by Friebe et al. (1991).  相似文献   

12.
Wheat curl mite (WCM, Aceria tosichella Keifer) and WCM-transmitted wheat streak mosaic virus (WSMV, genus Tritimovirus) are devastating production constraints for wheat in the US Great Plains. Breeding wheat cultivars with genetic resistance to WCM and WSMV is a viable and economically feasible way to reduce yield loss. The objectives of this study were to (a) identify tightly linked markers for WCM resistance in the wheat cultivar TAM 112 (PI 643143) using linkage and association analysis with the 90K Infinium iSelect SNP array and genotyping-by-sequencing, respectively and (b) develop and test kompetitive allele specific PCR (KASP) single-nucleotide polymorphisms (SNPs) for marker-assisted selection (MAS) of WCM resistance. We tested 124 F5:7 recombinant inbred lines (RILs) derived from the cross of TAM 112 and the WCM-susceptible cultivar TAM 111 (PI 631352). All lines were infested with a Texas WCM collection 2 (TWCMC2) that is virulent to resistance found on the wheat-rye 1AL.1RS translocation at the two-leaf stage and were rated for symptoms on the first and second week after infestation. Linkage maps were constructed with 4890 markers, including SNPs, simple sequence repeats (SSRs), and sequence-tagged site (STS) markers covering 21 chromosomes. A WCM resistance gene present in TAM 112 (CmcTAM112) was mapped onto chromosome arm 6DS. A genome-wide association study of wheat streak mosaic (WSM) symptoms from a separate experiment in Colorado showed significant marker-trait associations at the target regions on 6DS where CmcTAM112 was located, which demonstrated the effectiveness of this gene to reduce symptom severity. Four SNPs flanking CmcTAM112 were mapped within 3.6 cM in the biparental mapping population. We developed two KASP markers that are within 1.3 cM distal to CmcTAM112 and tested in diverse germplasm. These two markers can be used in MAS for improving WCM resistance in some wheat genetic backgrounds.  相似文献   

13.

Key message

Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome.

Abstract

Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat–Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat–Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat–Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (JrJrJvsJvsStSt) and Thinopyrum elongatum (EeEe), respectively.
  相似文献   

14.

Key message

Wheat lines carrying Ug99-effective stem rust resistance gene Sr43 on shortened alien chromosome segments were produced using chromosome engineering, and molecular markers linked to Sr43 were identified for marker-assisted selection.

Abstract

Stem rust resistance gene Sr43, transferred into common wheat (Triticum aestivum) from Thinopyrum ponticum, is an effective gene against stem rust Ug99 races. However, this gene has not been used in wheat breeding because it is located on a large Th. ponticum 7el2 chromosome segment, which also harbors genes for undesirable traits. The objective of this study was to eliminate excessive Th. ponticum chromatin surrounding Sr43 to make it usable in wheat breeding. The two original translocation lines KS10-2 and KS24-1 carrying Sr43 were first analyzed using simple sequence repeat (SSR) markers and florescent genomic in situ hybridization. Six SSR markers located on wheat chromosome arm 7DL were identified to be associated with the Th. ponticum chromatin in KS10-2 and KS24-1. The results confirmed that KS24-1 is a 7DS·7el2L Robertsonian translocation as previously reported. However, KS10-2, which was previously designated as a 7el2S·7el2L-7DL translocation, was identified as a 7DS-7el2S·7el2L translocation. To reduce the Th. ponticum chromatin carrying Sr43, a BC2F1 population (Chinese Spring//Chinese Spring ph1bph1b*2/KS10-2) containing ph1b-induced homoeologous recombinants was developed, tested with stem rust, and genotyped with the six SSR markers identified above. Two new wheat lines (RWG33 and RWG34) carrying Sr43 on shortened alien chromosome segments (about 17.5 and 13.7 % of the translocation chromosomes, respectively) were obtained, and two molecular markers linked to Sr43 in these lines were identified. The new wheat lines with Sr43 and the closely linked markers provide new resources for improving resistance to Ug99 and other races of stem rust in wheat.  相似文献   

15.
Thinopyrum intermedium has been hybridized extensively with wheat (Triticum aestivum L.) and several genes for disease resistance have been introgressed to cultivated wheat. However, there are very few reports about the Th. intermedium-derived seed storage protein genes which have been transferred into a wheat background by chromosome manipulation. Our aim is to identify several wheat–Th. intermedium ssp. trichophorum derivatives, and document these lines by genomic in situ hybridization (GISH), molecular markers and seed storage protein analysis. We found that a novel Th. intermedium 1St#2 chromosome-specific high-molecular-weight glutenin subunit (HMW-GS) was transferred to the wheat–Thinopyrum derivative lines. The genomic sequence of the Thinopyrum-derived HMW-GS was characterized and designated Glu-1St#2x, since it resembled x-type glutenins in both the N-terminal domain and C-terminal domain. It is much shorter than that of reported HMW-GS genes. The Glu-1St#2x sequence was successfully expressed in Escherichia coli and resulted in the identical weight to the native protein. The GISH and newly developed chromosome Thinopyrum-specific DNA markers enabled physically location of Glu-1St#2x to the region FL0.60–1.00 on Th. intermedium 1St#2L chromosome arm. Phylogenetic analysis revealed that the Glu-1St#2x evolved earlier than other x-type HMW-GS homoeologues in modern wheat genomes. The effect of Glu-1St#2x on protein content, sodium dodecyl sulphate sedimentation value and improvement of solvent retention capacity in wheat background suggested that Th. intermedium chromosome 1St#2 may have potential for improvement of wheat end-product quality.  相似文献   

16.
The introduction of alien genetic variation from the genus Thinopyrum through chromosome engineering into wheat is a valuable and proven technique for wheat improvement. A number of economically important traits have been transferred into wheat as single genes, chromosome arms or entire chromosomes. Successful transfers can be greatly assisted by the precise identification of alien chromatin in the recipient progenies. Chromosome identification and characterization are useful for genetic manipulation and transfer in wheat breeding following chromosome engineering. Genomic in situ hybridization (GISH) using an S genomic DNA probe from the diploid species Pseudoroegneria has proven to be a powerful diagnostic cytogenetic tool for monitoring the transfer of many promising agronomic traits from Thinopyrum. This specific S genomic probe not only allows the direct determination of the chromosome composition in wheat-Thinopyrum hybrids, but also can separate the Th. intermedium chromosomes into the J, J(S) and S genomes. The J(S) genome, which consists of a modified J genome chromosome distinguished by S genomic sequences of Pseudoroegneria near the centromere and telomere, carries many disease and mite resistance genes. Utilization of this S genomic probe leads to a better understanding of genomic affinities between Thinopyrum and wheat, and provides a molecular cytogenetic marker for monitoring the transfer of alien Thinopyrum agronomic traits into wheat recipient lines.  相似文献   

17.
Blue wheat grain contains different groups of pigments that can be used for making specialty foods or as food colorants. Thinopyrum bessarabicum, a wild relative of wheat, carries a blue-grained gene on chromosome 4J. In this study, we analyzed the mitotic chromosomes of 159 F7 lines derived from the cross between Triticum aestivum cv. Chinese Spring (CS) and a CS–Th. bessarabicum amphiploid by using multi-color fluorescence in situ hybridization, genomic in situ hybridization, and newly developed chromosome 4J-specific DNA markers. Intact chromosome 4J and various 4J chromosomal segments were identified in the 159 lines. The blue-grained gene of Th. bessarabicum was physically localized to the region between the centromere and FL0.52 on chromosome arm 4JL. The chromosomal location of this gene differed from the location of previously reported blue-grained genes. In addition, a strong dosage effect was observed with this gene. These results suggest that the blue-grained gene in Th. bessarabicum represents a novel gene locus for blue aleurone, designated BaThb. The wheat lines and 4J chromosome-specific molecular markers developed in this study will facilitate the introgression and utilization of BaThb for wheat nutritional quality improvement.  相似文献   

18.
Seedlings of a series of addition or substitution lines of wheat containing different Thinopyrum intermedium chromosomes were inoculated with the PAV and RPV serotypes of barley yellow dwarf virus (BYDV). Reduced virus titres in infected plants were ascribed to a single pair of homoeologous group 7 chromosomes from Th. intermedium in the disomic addition lines L1 and TAF 2. The group 7 chromosome is associated with red pigmentation of coleoptiles, which was also observed in two lines ditelosomic for the α arm of the chromosome. However, when infected with the PAV serotype of BYDV, the ditelosomic lines had normal virus titres and it is concluded that potential determinants of BYDV resistance are located on the β arm of the Group 7 chromosome.  相似文献   

19.

Key message

We report a new stripe rust resistance gene on chromosome 7AS in wheat and molecular markers useful for transferring it to other wheat genotypes.

Abstract

Several new races of the stripe rust pathogen have established throughout the wheat growing regions of China in recent years. These new races are virulent to most of the designated seedling resistance genes limiting the resistance sources. It is necessary to identify new genes for diversification and for pyramiding different resistance genes in order to achieve more durable resistance. We report here the identification of a new resistance gene, designated as Yr61, in Chinese wheat cultivar Pindong 34. A mapping population of 208 F2 plants and 128 derived F2:3 lines in a cross between Mingxian 169 and Pindong 34 was evaluated for seedling stripe rust response. A genetic map consisting of eight resistance gene analog polymorphism (RGAP), two sequence-tagged site (STS) and four simple sequence repeat (SSR) markers was constructed. Yr61 was located on the short arm of chromosome 7A and flanked by RGAP markers Xwgp5467 and Xwgp5765 about 1.9 and 3.9 cM in distance, which were successfully converted into STS markers STS5467 and STS5765b, respectively. The flanking STS markers could be used for marker-assisted selection of Yr61 in breeding programs.  相似文献   

20.
Common root rot, caused by Cochliobolus sativus (Ito and Kurib) Drechs. ex Dastur, is a major soil-borne disease of spring and winter wheat (Triticum aestivum L. em Thell.) on the Canadian prairies. Resistance to common root rot from Thinopyrum ponticum (Podp.) Liu and Wang was transferred into wheat via crossing with Agrotana, a resistant wheat - Th. ponticum partial amphiploid line. Evaluation of common root rot reactions showed that selected advanced lines with blue kernel color derived from a wheat x Agrotana cross expressed more resistance than the susceptible T. aestivum 'Chinese Spring' parent and other susceptible wheat check cultivars. Cytological examination revealed 41 to 44 chromosomes in the advanced lines. Genomic in situ hybridization, using total genomic DNA from Pseudoroegneria strigosa (M. Bieb) A. L?ve (St genome) as a probe, demonstrated that the blue kernel plants had two pairs of spontaneously translocated J-Js and Js-J chromosomes derived from the J and Js genome of Th. ponticum. The presence of these translocated chromosomes was associated with increased resistance of wheat to common root rot. The lines with blue aleurone color always had a subcentromeric Js-J translocated chromosome. The subtelocentric J-Js translocated chromosome was not responsible for the blue kernel color. The genomic in situ hybridization analysis on meiosis revealed that the two spontaneous translocations were not reciprocal translocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号