首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100–1000 mM); heavy metal (chromium, nickel and zinc: 1–10 mM); pesticides: malathion (100–600 ppm), carbofuran (100–600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed ‘non-species specific’ growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals.  相似文献   

2.
Rice (Oryza sativa) is a staple food in Thailand and, in addition, feeds around one half of the world’s population. Therefore, diseases of rice are of special concern. Rice is destroyed by 2 main pathogens, Fusarium oxysporum and Pyricularia oryzae the causative agents of root rot and blast in rice respectively. These pathogens result in low grain yield in Thailand and other Southeast Asian countries. Soil samples were taken from paddy fields in Northern Thailand and bacteria were isolated using the soil dilution plate method on Nutrient agar. Isolation yielded 216 bacterial isolates which were subsequently tested for their siderophore production and effectiveness in inhibiting mycelial growth in vitro of the rice pathogenic fungi; Alternaria sp., Fusarium oxysporum, Pyricularia oryzae and Sclerotium sp., the causal agent of leaf spot, root rot, blast and stem rot in rice. It was found that 23% of the bacteria isolated produced siderophore on solid plating medium and liquid medium, In dual culture technique, the siderophore producing rhizobacteria showed a strong antagonistic effect against the Alternaria (35.4%), Fusarium oxysporum (37.5%), Pyricularia oryzae (31.2%) and Sclerotium sp. (10.4%) strains tested. Streptomyces sp. strain A 130 and Pseudomonas sp. strain MW 2.6 in particular showed a significant higher antagonistic effect against Alternaria sp. while Ochrobactrum anthropi D 5.2 exhibited a good antagonistic effect against F. oxysporum. Bacillus firmus D 4.1 inhibited P. oryzae and Kocuria rhizophila 4(2.1.1) strongly inhibited Sclerotium sp. P. aureofaciens AR 1 was the best siderophore producer overall and secreted hydroxamate type siderophore. This strain exhibits an in vitro antagonistic effect against Alternaria sp., F. oxysporum and P. oryzae. Siderophore production in this isolate was maximal after 15 days and at an optimal temperature of 30°C, yielding 99.96 ± 0.46 μg ml?1 of siderophore. The most effective isolates were identified by biochemical tests and molecular techniques as members of the Genus Bacillus, Pseudomonas and Kocuria including B. firmus D 4.1, P. aureofaciens AR1 and Kocuria rhizophila 4(2.1.1). The study demonstrated antagonistic activity towards the target pathogens discussed and are thus potential agents for biocontrol of soil borne diseases of rice in Thailand and other countries.  相似文献   

3.
Plant growth promoting rhizobacteria (PGPR) are eco-friendly alternatives to chemical fungicides to manage plant diseases. We evaluated the efficacy of a Pseudomonas fluorescens formulation against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus at multiple banana plantations. Three field trials were conducted to assess the wilt incidence and the populations of nematode and bacteria in the soil treated with a liquid formulation of P. fluorescens at 2.0, 3.0 and 4.0 l ha?1 using drip irrigation system at 60, 120, 180 and 240 days after planting. The results showed that the treatment at 4.0 l ha?1 reduced the wilt incidence by 60 %. It also reduced the overall population of H. multicinctus by 41.3–89.0 % in the treated fields. The presence of P. fluorescens in the treated soil was 5.6 × 10cfu g?1 of soil at the time of harvest. The treatment of biocontrol agent P. fluorescens also resulted in an overall yield increase in banana production by 36.6–46.5 % compared to the control.  相似文献   

4.
In studying plant colonization by inoculated Fusarium oxysporum endophytes, it is important to be able to distinguish inoculated isolates from saprophytic strains. In the current study, F. oxysporum isolates were transformed with the green (GFP) and red fluorescent protein (DsRed) genes, and benomyl- and chlorate-resistant mutant isolates were also developed. The benomyl- and chlorate-resistant mutants, and the fluorescently labelled transformants, were able to grow on potato dextrose agar amended with 20 mg Benlate® l?1, 30 g chlorate l?1 and 150 μg hygromycin ml?1, respectively. Single spores of all mutants remained stable after several transfers on non-selective media. Most mutants and transformants produced colony diameters that did not differ significantly from that of their wild-type progenitors after 7 days of growth on non-selective media. Few mutants, however, had growth rates that were either slower or faster than for their wild-types. Plant colonization studies showed that root and rhizome tissue colonization by most benomyl- and chlorate-resistant mutants was similar to that of their wild-type isolates. Unlike GFP transformants, DsRed transformants were difficult to visualize in planta. Both the mutants and transformants can be used for future studies to investigate colonization, distribution and survival of biocontrol F. oxysporum endophytes in banana plants.  相似文献   

5.
Chinese medicinal plants and their surrounding rhizospheric soil serve as promising sources of actinobacteria. A total of 180 actinobacteria strains were isolated from the rhizosphere soil, leaves, stems, and roots of nine selected plants and have been identified as potential biocontrol agents against Fusarium oxysporum f. sp. cucumerinum. An endophytic strain CNS-42 isolated from Alisma orientale showed the largest zone of inhibition demonstrating a potent effect against F. oxysporum f. sp. cucumerinum and a broad antimicrobial activity against bacteria, yeasts, and other pathogenic fungi. The in vivo biocontrol assays showed that the disease severity index was significantly reduced (P < 0.05), and plant shoot fresh weight and height increased greatly (P < 0.05) in plantlets treated with strain CNS-42 compared to the negative control. This isolate was identified as Streptomyces sp. based on cultural, physiological, morphological characteristics, and 16S rRNA gene analysis. Further bioassay-guided isolation and purification revealed that staurosporine was responsible for its antifungal and plant growth promoting activities and the latter property of staurosporine is reported for the first time. The in vivo assay was further performed and indicated that staurosporine showed good growth promoting effect on the plant shoot biomass of cucumber. This is the first critical evidence identifying CNS-42 as a biocontrol agent for the soil borne pathogen, F. oxysporum f. sp. cucumerinum.  相似文献   

6.
Phytophthora species cause enormous economic loss every year worldwide. Xenocoumacin 1 (Xcn1), isolated from the bacterium Xenorhabdus nematophilus, is a broad-spectrum antibiotic against agricultural pathogens, especially Phytophthora. To understand the inhibitory mode of Xcn1 toward Phytophthora pathogens, we determined the inhibitory effects of Xcn1 on Phytophthora capsici both in vitro and in vivo. In vitro, Xcn1 inhibited different stages in the life cycle of P. capsici, including sporangium formation, zoospore germination, and mycelial growth, with 50% effective concentration (EC50) values of 0.037, 0.81, and 2.44 μg ml?1, respectively. Xcn1 also reduced zoospore motility. In vivo, Xcn1 efficiently controlled the Phytophthora blight of pepper with a disease reduction of 99% at a concentration of 5 μg ml?1 assessed on the third day after incubation of wound stem plants. In addition, Xcn1-treated P. capsici mycelia exhibited increased mycelial branch spacing, evident plasmolysis, and leakage of intracellular components. In conclusion, in the presence of Xcn1, several stages in the life cycle of P. capsici were inhibited, and the hyphae exhibited obvious morphological changes.  相似文献   

7.
The persistent edaphic stress on microbial succession due to dynamic changes during composting was explored for selection of multi-stress tolerant microbe(s) desirable for ethanol production. A total of 23 strains were isolated from mango compost using four successive enrichments in YP broth (g l?1): glucose, 100; 150; 250 with ethanol (40) and cycloheximide (0.4) at 40 °C, pH 6.0. Based on multi-gene ribotyping, 14 yeasts (61 %) of Saccharomycetaceae, 2 filamentous fungi (8.6 %) and 7 bacteria (30.4 %) were obtained. Phenetic and phylogenetic analysis of the 14 yeasts revealed 64.3 % tolerant to 500 g l?1 glucose, growth at 45 °C and resemblance to Candida sp. (14.3 %), Kluyveromyces marxianus (35.7 %), Pichia kudriavzevii (21.4 %) and Saccharomyces cerevisiae (28.6 %). Assessment of the 14 yeasts in glucose fermentation medium (pH 4.5 at 40 °C) showed ethanol productivity of ≥92 % by 12 yeasts with theoretical yields of 90–97 %. Fermentation of molasses (150 g l?1 glucose equivalent) by P. kudriavzevii D1C at 40 °C resulted in 73.70 ± 0.02 g l?1 ethanol and productivity of 4.91 ± 0.01 g l?1 h?1. Assessment of P. kudriavzevii D1C revealed multi-stress tolerance towards 5-hydroxymethyl furfural, ethanol (20 %, v/v), high gravity and H2O2 (0.3 M) indicating suitability for ethanol production using high gravity molasses and pre-treated lignocellulosic biomass fermentation.  相似文献   

8.
To find a potential biocontrol agent against Fusarium sp. in apple seedlings, an endophytic bacterium strain was isolated from apple tree tissues. The inhibitive efficiency of the isolated strain against the hyphal growth of Fusarium sp. and Rhizoctonia solani was tested. Strain Y-1 showed significant inhibitory effects against Fusarium oxysporum, F. moniliforme, F. proliferatum, F. solani and R. solani. Its antifungal activity against F. oxysporum was the highest, reaching up to 64.90 %. In vivo tests indicated that strain Y-1 effectively protects apple from F. oxysporum infections. The control effect reached 92.26 % when bacterial inoculation was performed 3 days prior to pathogen inoculation. Strain Y-1 could colonize the rhizosphere and tissues within 30 days. It was also able to induce systemic resistance in apple seedlings as shown by the activities of SOD and POD. Strain Y-1 significantly increased the root length, root wet and dry weights, and plant height of the apple seedlings compared with the control group. The homology analysis of the 16S rRNA sequence, together with morphological, physical, and biochemical analyses, revealed that strain Y-1 is Bacillus subtilis.  相似文献   

9.
An extracellular β-glucosidase (BGL) from Fusarium oxysporum was purified to homogeneity by a single chromatography step on a gel filtration column. The optimum activity of BGL on cellobiose was observed at pH 5.0 and 60 °C. Under the same conditions, the K m and V max values for p-nitrophenyl β-d-glucopyranoside and cellobiose were 2.53 mM, 268 U?mg protein?1 and 20.3 mM, 193 U?mg protein?1, respectively. The F. oxysporum BGL enzyme was highly stable at acidic pH (t 1/2?=?470 min at pH 3). A commercial BGL Novo188 (Novozymes) and F. oxysporum BGL were compared in their ability to supplement Celluclast 1.5 L (Novozymes). In comparison with the commercial Novo188 (267 mg?g substrate?1), F. oxysporum BGL supplementation released more reducing sugars (330 mg?g substrate?1) from cellulose under simulated gastric conditions. These properties make F. oxysporum BGL a good candidate as a new commercial BGL to improve the nutrient bioavailability of animal feed.  相似文献   

10.
We have shown, the outcome of antifungal activity of phenazine derivatives which is produced by fluorescent pseudomonads (FPs) for the control of sheath blight of rice. A total of 50 fluorescent pseudomonads (FPs) were isolated from rice rhizosphere. Off which, 36 FPs exhibited antagonistic activity against Rhizoctonia solani, Macrophomina phaseolina, Fusarium oxysporum, Alternaria alternata and Sclerotium rolfsii up to 70–80% compared to control by dual culture method. BOX-PCR analyses of antagonistic isolates indicated that two phylogenetic group, where group I consisted of 28 isolates and eight isolates belongs to group II. Among 36 FPs, a total of 10 FPs revealed that the presence of phenazine derivatives on thin layer chromatography (TLC), which is coincided with that of authentic phenazine with Rf value 0.57. Similar to TLC analysis, antibiotic encoding gene phenazine-1-carboxamide (PCN) was detected in 10 FPs by PCR analysis with respective primer. Among, PCN detected isolates of FPs, a significant biocontrol potential possessing isolate designated as VSMKU1 and it was showed prominent antifungal activity against R. solani and other tested fungal pathogens. Hence, the isolate VSMKU1 was selected for further studies. The selected isolate VSMKU1 was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. The antifungal metabolite phenazine like compound produced by VSMKU1 was confirmed by UV, FT-IR and HPLC analysis. The phenazine compound from VSMKU1 significantly arrest the growth of R. solani compared to carbendazim by well diffusion method. The detached leaf assay showed remarkable inhibition of lesion height 80 to 85% by the treatments of culture (VSMKU1), cell free culure filtrate and phenazine like compound compared to control and other treatments was observed in detached leaves of rice. These results emphasized that VSMKU1 isolate can be used as an alternative potential biocontrol agent against sheath blight of rice, instead of using commercial fungicide such as validamycin and carbendazim which cause environmental pollution and health hazards.  相似文献   

11.
Antifungal antibiotic from Pseudomonas chlororaphis isolate PA23 was identified as Phenazine using TLC and HPLC. Phenazine recorded the highest inhibition zone of 21?mm with 35.55% percent inhibition of mycelial growth of Pythium aphanidermatum over control. It had a significant effect on the hyphal morphology of P. aphanidermatum and on spore germination of Botryodiplodia theobromae and Alternaria solani. Disorganization of hyphal morphology of P. aphanidermatum includes vacuolization, cell content degeneration and hyphal lysis. Similarly interaction of phenazine with Rhizoctonia solani resulted in abnormal swelling of hyphal tips was noticed in the hyphal tips. Similarly the germination of sclerotia of Macrophomina phaseolina, R. solani and Sclerotium rolfsii were completely inhibited by phenazine at a concentration 50?μl. Incubation of the eggs of the root knot nematode Meloidogyne incognita in 30?μl concentration of phenazine, completely suppressed the hatching of juveniles.  相似文献   

12.
Beneficial effects of phosphate solublising Pseudomonas isolates were studied. Out of 30 cultures of bacteria and fungi, 25 cultures solubilised 8–70% P on solid and 9–73 μg ml?1 in liquid medium. These were tested for antifungal activity against Aspergillus niger, Sclerotium rolfsii, Rhizoctonia solani, Fusarium oxysporum and Pythium aphanidermatum. The cultures of Pf-1, Pf-6, Pf-8, Pf-11, T-9 and T-10 did not inhibit any of the fungi tested, whereas Pf-9 was inhibitory to all. On the basis of P-solubilisation and antifungal activity Pf-9 and T-4 were finally selected for subsequent studies and were identified as Pseudomonas spp.  相似文献   

13.
In order to replace the conventional chemical pesticides, extensive researches have been done on entomopathogenic fungi. Entomopathogenic fungus Beauveria bassiana is an important biocontrol agent against major economic pests and is being employed in Integrated pest management (IPM) along with synthetic pesticides. Cabbage aphid Brevicoryne brassicae L. is one of the important pests of Brassicaceae family. Therefore, in this research, the virulence isolate of B. brassicae (IRAN 429C) was investigated on adults of cabbage aphid under laboratory conditions. The experiments were conducted at 25 ± 2 °C, 60 ± 10 R. H. and a photoperiod of 16:8 (L: D). After preliminary experiments, the adult aphids were treated with fungal concentrations of 1 × 103 to 1 × 107 spores/ml. Probit analysis was conducted to calculate LC50 and LC95 values for the isolate. Positive correlation was observed between concentrations and pest mortality. LC50 and LC95 values calculated for IRAN 429C isolate are 2.04 × 105 and 1.82 × 108, respectively. The mortality was counted one day after the treatment and then continued for 14 days. Cumulative mortality for 14 days after treatment varied from 54% for IRAN 429C at low concentration (103 conidia/ml) to 83% at high concentration (107 conidia/ml). The lowest LT50 was obtained at 7.67 days for IRAN 429C isolate at concentration 1 × 107 spore/ml. According to the insecticidal activity of mentioned fungi on cabbage aphid, it can be used in biocontrol programmes of B. brassicae.  相似文献   

14.
Trichoderma species are collected from different location of sugarbeet growing areas of Tamil Nadu and it is effective against Sclerotium rolfsii pathogen caused by sugarbeet ecosystems. Out of thirty-one isolates of Trichoderma viride and four isolates of Trichoderma harzianum collected and tested for their antagonistic activity against S. rolfsii by dual culture technique, one isolate was found to be effective T. viride (TVB1) that recorded the maximum (73.03%) inhibition on the mycelial growth recording only 2.40 cm growth as against 8.90 cm in the control. The isolates of T. harzianum THB-1 recorded 71.19% mycelial growth reduction over control. The colonisation behaviour of T. viride (TVB1) revealed that it completely over grew on pathogen within 48 h after interaction with the pathogen, and speed of growth on pathogen was also high and it possesses a higher level of competitive saprophytic ability. The best four isolates of TVB1, TVB-2, TVB-3 and TVB31 and two isolates of T. harzianum THB-1 and THB-2 were compared with other species of Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma koningii and Chaetomium globosum and tested under in vitro condition. BA of neem cake at 150 kg ha?1 + T. viride isolate (TVB1) at 2.5 kg/ha recorded least root rot disease incidence of 17.05% which accounted for 75.37% disease reduction over control and highest recorded maximum root yield 65.73 t ha?1 and increasing sugar content.  相似文献   

15.
Two novel aerobic p-n-nonylphenol-degrading bacterial strains were isolated from seawater obtained from the coastal region of Ogasawara Islands, Japan. The 16S rRNA gene sequence analysis indicated that the strains are affiliated with the order Alteromonadales within the class Gammaproteobacteria. One isolate, strain KU41G2, is most closely related to Maricurvus nonylphenolicus (99.2 % similarity), and is tentatively identified as M. nonylphenolicus. The other isolate, strain KU41GT, is also most closely related to M. nonylphenolicus; however, the 16S rRNA gene sequence similarity was only 94.7 %. Cells of strain KU41GT are Gram-negative rods with a single polar flagellum. The predominant respiratory lipoquinone was ubiquinone-8, and the major cellular fatty acids were C17:1 ω8c (24.2 %); C15:0 iso 2-OH; and/or C16:1 ω7c (16.3 %), C15:0 (10.3 %), C11:0 3-OH (9.5 %), C9:0 3-OH (6.7 %), C10:0 3-OH (6.4 %), and C18:1 ω7c (5.5 %). The DNA G+C content was 53.3 mol%. On the basis of physiological, chemotaxonomic, and phylogenetic data, strain KU41GT is suggested to represent a novel species of a new genus, for which we propose the name Pseudomaricurvus alkylphenolicus gen. nov., sp. nov. The type strain of P. alkylphenolicus is KU41GT (=JCM 19135T = KCTC 32386T).  相似文献   

16.
Acinetobacter calcoaceticus HIRFA32 from wheat rhizosphere produced catecholate type of siderophore with optimum siderophore (ca. 92 % siderophore units) in succinic acid medium without FeSO4 at 28 °C and 24 h of incubation. HPLC purified siderophore appeared as pale yellow crystals with molecular weight [M+1] m/z 347.18 estimated by LCMS. The structure elucidated by 1H NMR, 13C NMR, HMQC, HMBC, NOESY and decoupling studies, revealed that siderophore composed of 2,3-dihydroxybenzoic acid with hydroxyhistamine and threonine as amino acid subunits. In vitro study demonstrated siderophore mediated mycelium growth inhibition (ca. 46.87 ± 0.5 %) of Fusarium oxysporum. This study accounts to first report on biosynthesis of acinetobactin-like siderophore by the rhizospheric strain of A. calcoaceticus and its significance in inhibition of F. oxysporum.  相似文献   

17.
Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZαA vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k cat of 189.4 s?1 and K m of 28.26 mM while M12 GOx had k cat of 352.0 s?1 and K m of 13.33 mM for glucose at pH 5.5. Specificity constants k cat/K m of wt (6.70 mM?1 s?1) and M12 GOx (26.7 mM?1 s?1) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.  相似文献   

18.
The effect of inoculation with Pythium aphanidermatum was studied on total phenol (TP), salicylic acid (SA), chlorophylls and carotenoid contents of leaves and plant growth characteristics of five tobacco cultivars, namely RK-10 P3, RK-12 P3, RK-13 P4, RK-18 P8 and RK-26 P3, to assess cultivar response at biochemical and morphological levels. Root rot measured at 0–5 scale was 2.66 on cv. RK-10 P3, followed by 2. 33 on cv. RK-18 P8, 1.33 on cv. RK-26 P3 and 1.0 on cv. RK-13 P4. The cv. RK-12 P3 did not develop measurable root rot. The rhizosphere population of root rot fungus increased over time, being highest on the cv. RK-10 P3 (P ≤ 0.001), followed by cvs. RK-18 P8, RK-26 P3, RK-13 P4 and RK-12 P3. Inoculation with the fungus resulted in 5% (cv. RK-10 P3), 10.3% (cv. RK-18 P8, P ≤ 0.05), 10.9% (cv. RK-26 P3, P ≤ 0.05), 16.4% (cv. RK-13 P4, P ≤ 0.01) and 41.5% (cv. RK-12 P3, P ≤ 0.001) increase in the TP content of leaves. SA concentration in tobacco leaves increased marginally (0.8%–3%) in cvs. RK-10 P3, RK-18 P8 and RK-26 P3, but considerably (16%–17%, P ≤ 0.01) in cv. RK-13 and RK-12 P3 in comparison to uninoculated plants. Total chlorophyll content of leaves in response to inoculation with P. aphanidermatum decreased by 27% and 23% in tobacco cvs. RK-10 P3 and RK-18 P8 (P ≤ 0.001) and 17.6 (P ≤ 0.01) and 10.6% (P ≤ 0.05) in cv. RK-26 P3 and RK-13 P4, respectively. Reduction in chlorophylls a and b was 20% and 15% in cv. RK-10 P3 and 20% and 11% in cv. RK-18 P8. Total carotenoid contents of tobacco leaves decreased significantly in cvs. RK-10 P3 and RK-18 P8 (P ≤ 0.05). Significant and greater decrease in plant growth variables was recorded in the cultivars in which increase in TP and SA was lower and decrease in chlorophyll and carotenoids was greater. This study has revealed that greater synthesis of TP and SA may provide resistance in tobacco plants against P. aphanidermatum. The cv. RK-12 P3, in which greatest increase in the SA (17%) and TP (41.5%) was recorded, did not exhibit a significant decrease in plant growth variables and leaf pigments (P ≤ 0.05).  相似文献   

19.
Isolate W14T recovered from a household tooth brush holder was found to be gram-negative, a facultative anaerobic, non-motile, capsulated, and a non-endospore-forming straight rod. Based on phylogenetic analysis with 16S rRNA gene sequence, isolate W14T was affiliated to the genus Klebsiella. The closest phylogenetic relative was K. oxytoca with 99 % similarity in the 16S rRNA gene sequence. The major whole-cell fatty acids were C16:0 (31.23 %), C18:1ω6c/C18:1ω7c (21.10 %), and C16:1ω7c/C16:1ω6c (19.05 %). The sequence similarities of isolate W14T based on rpoB, gyrA, and gyrB were 97, 98, and 98 % with K. oxytoca, and 97, 93, and 90 % with K. mobilis (=Enterobacter aerogenes), respectively. The ribotyping pattern showed a 0.46 similarity with K. oxytoca ATCC 13182T and 0.24 with K. mobilis ATCC 13048T. The DNA G+C content of isolate W14T was 54.6 mol%. The DNA–DNA relatedness was 55.7 % with K. oxytoca ATCC 13182T. Using the identification technology of MALDI-TOF mass spectrometry, the top matches for this isolate were K. oxytoca ATCC 13182T (Match Factor Score 1.998) and K. mobilis (Score 1.797). On the basis of phenotypic, biochemical, chemotaxonomic, and molecular studies, isolate W14T could be differentiated from other members of the genus Klebsiella including K. mobilis. Therefore, it is proposed that isolate W14T (=ATCC BAA-2403T=DSM 25444T) should be classified as the type strain of a novel species of the genus Klebsiella, K. michiganensis sp. nov.  相似文献   

20.
Allamanda leaf extract (Allamanda cathertica) was made in water at room temperature (25?± 2?°C) as well as in a number of less polar to highly polar solvents like methylene chloride, benzene, chloroform and ethyl acetate at their boiling point, that means, at refluxing temperature (40?± 2?°C). Methylene chloride, benzene, chloroform, ethyl acetate and water extracts were applied to determine their growth inhibition against Phomopsis vexans, Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsii. Results of these extracts showed that refluxing methanol, ethanol and ethyl acetate extracts of Allamanda were statistically similar for inhibition of mycelial growth of all fungi tested. But effect of 50% ethanol extract is different; it inhibited 100% mycelial growth of P. vexans, P. capsici and F. oxysporum; 83.33% of R. solani and 88.63% of S. rolfsii. Effort was also made to find out the compound in Allamanda to be responsible for such antifungal activity. Thin layer chromatography (TLC) of Allamanda extracts showed the presence of a number of compounds having polarity very high to low. The Rf values of compounds in 37–42 fractions were calculated and from these six fractions, crystals were separated. These crystals were more or less white. Melting point of these crystals was determined by ordinary and digital melting point apparatus that ranged from 145.5–162 C. Structural determination of the compound was done by Infra-red (IR) spectral study. The finger print region was 700–1400?cm?1. The strong band at 1612.4, 1633.6, 1693.4, 1655 and 2850.6?cm?1 indicated the presence of conjugated double bond (–C=C–C=C–), non-conjugated double-bond (–C=C–C–C–C=C–), carbonyl group attached to carbon–carbon double (–CO–C=C), ester (–COOR) and C–H stretching, respectively. Mass spectra of separated compounds gave molecular weight 470. All these characters are typical to pumieride as described previously. Again, In vitro screening of plumieride against P. vexans, P. capsici, F. oxysporum, R. solani and S. rolfsii were found effective in inhibiting radial mycelial growth of these fungi at 1:2 w/v concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号