首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium which was reported to use a novel contact-dependent strategy to degrade cellulose. It was speculated that cellooligosaccharides were transported into the periplasm for further digestion. In this study, we reported that most of the endoglucanase and β-glucosidase activity was distributed on the cell surface of C. hutchinsonii. Cellobiose and part of the cellulose could be hydrolyzed to glucose on the cell surface. However, the cell surface cellulolytic enzymes were not sufficient for cellulose degradation by C. hutchinsonii. An outer membrane protein, CHU_1277, was disrupted by insertional mutation. Although the mutant maintained the same endoglucanase activity and most of the β-glucosidase activity, it failed to digest cellulose, and its cellooligosaccharide utilization ability was significantly reduced, suggesting that CHU_1277 was essential for cellulose degradation and played an important role in cellooligosaccharide utilization. Further study of cellobiose hydrolytic ability of the mutant on the enzymatic level showed that the β-glucosidase activity in the outer membrane of the mutant was not changed. It revealed that CHU_1277 played an important role in assisting cell surface β-glucosidase to exhibit its activity sufficiently. Studies on the outer membrane proteins involved in cellulose and cellooligosaccharide utilization could shed light on the mechanism of cellulose degradation by C. hutchinsonii.  相似文献   

2.
3.
Zhang  Cong  Wang  Xifeng  Zhang  Weican  Zhao  Yue  Lu  Xuemei 《Applied microbiology and biotechnology》2017,101(5):1919-1926

Cytophaga hutchinsonii is a gram-negative bacterium that can efficiently degrade crystalline cellulose by a novel strategy without cell-free cellulases or cellulosomes. Genomic analysis implied that C. hutchinsonii had endoglucanases and β-glucosidases but no exoglucanases which could processively digest cellulose and produce cellobiose. In this study, BglA was functionally expressed in Escherichia coli and found to be a β-glucosidase with wide substrate specificity. It can hydrolyze pNPG, pNPC, cellobiose, and cellodextrins. Moreover, unlike most β-glucosidases whose activity greatly decreases with increasing length of the substrate chains, BglA has similar activity on cellobiose and larger cellodextrins. The K m values of BglA on cellobiose, cellotriose, and cellotetraose were calculated to be 4.8 × 10−2, 5.6 × 10−2, and 5.3 × 10−2 mol/l, respectively. These properties give BglA a great advantage to cooperate with endoglucanases in C. hutchinsonii in cellulose degradation. We proposed that C. hutchinsonii could utilize a simple cellulase system which consists of endoglucanases and β-glucosidases to completely digest amorphous cellulose into glucose. Moreover, BglA was also found to be highly tolerant to glucose as it retained 40 % activity when the concentration of glucose was 100 times higher than that of the substrate, showing potential application in the bioenergy industry.

  相似文献   

4.
Cytophaga hutchinsonii is an abundant aerobic cellulolytic bacterium that rapidly digests crystalline cellulose in a contact-dependent manner. The different roles of various predicted glycoside hydrolases and the detailed mechanism used by C. hutchinsonii in cellulose digestion are, however, not known. In this study, an endoglucanase belonging to glycoside hydrolase family 5 (GH5) named as ChCel5A was isolated from the outer membrane of C. hutchinsonii. The catalytic domain of ChCel5A exhibited typical endoglucanase activity and was capable of hydrolyzing insoluble cellulose with cellobiose and cellotriose as the predominant digestion products. Site-directed mutagenesis identified two aromatic amino acids in ChCle5A, W61 and W308, that dramatically decreased its hydrolytic activity toward filter paper while causing only a slight decrease in carboxymethylcellulase (CMCase) activity. Disruption of chu_1107 encoding ChCel5A caused no drastic effect on the growth parameters on cellulose for the resulting mutant strain with negligible reduction in the specific CMCase activities for intact cells. The demonstration of targeted gene inactivation capability for C. hutchinsonii has provided an opportunity to improve understanding of the details of the mechanism underlying its efficient utilization of cellulose.  相似文献   

5.
Brown rot basidiomycetes have long been thought to lack the processive cellulases that release soluble sugars from crystalline cellulose. On the other hand, these fungi remove all of the cellulose, both crystalline and amorphous, from wood when they degrade it. To resolve this discrepancy, we grew Gloeophyllum trabeum on microcrystalline cellulose (Avicel) and purified the major glycosylhydrolases it produced. The most abundant extracellular enzymes in these cultures were a 42-kDa endoglucanase (Cel5A), a 39-kDa xylanase (Xyn10A), and a 28-kDa endoglucanase (Cel12A). Cel5A had significant Avicelase activity—4.5 nmol glucose equivalents released/min/mg protein. It is a processive endoglucanase, because it hydrolyzed Avicel to cellobiose as the major product while introducing only a small proportion of reducing sugars into the remaining, insoluble substrate. Therefore, since G. trabeum is already known to produce a β-glucosidase, it is now clear that this brown rot fungus produces enzymes capable of yielding assimilable glucose from crystalline cellulose.  相似文献   

6.
Cytophaga hutchinsonii is an aerobic cellulolytic gliding bacterium. The mechanism of its cell motility over surfaces without flagella and type IV pili is not known. In this study, mariner-based transposon mutagenesis was used to identify a new locus CHU_1797 essential for colony spreading on both hard and soft agar surfaces through gliding. CHU_1797 encodes a putative outer membrane protein of 348 amino acids with unknown function, and proteins which have high sequence similarity to CHU_1797 were widespread in the members of the phylum Bacteroidetes. The disruption of CHU_1797 suppressed spreading toward glucose on an agar surface, but had no significant effect on cellulose degradation for cells already in contact with cellulose. SEM observation showed that the mutant cells also regularly arranged on the surface of cellulose fiber similar with that of the wild type strain. These results indicated that the colony spreading ability on agar surfaces was not required for cellulose degradation by C. hutchinsonii. This was the first study focused on the relationship between cell motility and cellulose degradation of C. hutchinsonii.  相似文献   

7.
Cytophaga hutchinsonii glides rapidly over surfaces and employs a novel collection of cell-associated proteins to digest crystalline cellulose. HimarEm1 transposon mutagenesis was used to isolate a mutant with an insertion in CHU_0170 (sprP) that was partially deficient in gliding motility and was unable to digest filter paper cellulose. SprP is similar in sequence to the Porphyromonas gingivalis type IX secretion system (T9SS) protein PorP that is involved in the secretion of gingipain protease virulence factors and to the Flavobacterium johnsoniae T9SS protein SprF that is needed to deliver components of the gliding motility machinery to the cell surface. We developed an efficient method to construct targeted nonpolar mutations in C. hutchinsonii and deleted sprP. The deletion mutant was defective in gliding and failed to digest cellulose, and complementation with sprP on a plasmid restored both abilities. Sequence analysis predicted that CHU_3105 is secreted by the T9SS, and deletion of sprP resulted in decreased levels of extracellular CHU_3105. The results suggest that SprP may function in protein secretion. The T9SS may be required for motility and cellulose utilization because cell surface proteins predicted to be involved in both processes have C-terminal domains that are thought to target them to this secretion system. The efficient genetic tools now available for C. hutchinsonii should allow a detailed analysis of the cellulolytic, gliding motility, and protein secretion machineries of this common but poorly understood bacterium.  相似文献   

8.
Yoon JJ  Cha CJ  Kim YS  Kim W 《Biotechnology letters》2008,30(8):1373-1378
An endoglucanase that is able to degrade both crystalline and amorphous cellulose was purified from the culture filtrates of the brown-rot fungus Fomitopsis pinicola grown on cellulose. An apparent molecular weight of the purified enzyme was approximately 32 kDa by SDS-PAGE analysis. The enzyme was purified 11-fold with a specific activity of 944 U/mg protein against CMC. The partial amino acid sequences of the purified endoglucanase had high homology with endo-beta-1,4-glucanase of glycosyl hydrolase family 5 from other fungi. The K(m) and K(cat)values for CMC were 12 mg CMC/ml and 670/s, respectively. The purified EG hydrolyzed both cellotetraose (G4) and cellopentaose (G5), but did not degrade either cellobiose (G2) or cellotriose (G3).  相似文献   

9.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

10.
Brown rot basidiomycetes have long been thought to lack the processive cellulases that release soluble sugars from crystalline cellulose. On the other hand, these fungi remove all of the cellulose, both crystalline and amorphous, from wood when they degrade it. To resolve this discrepancy, we grew Gloeophyllum trabeum on microcrystalline cellulose (Avicel) and purified the major glycosylhydrolases it produced. The most abundant extracellular enzymes in these cultures were a 42-kDa endoglucanase (Cel5A), a 39-kDa xylanase (Xyn10A), and a 28-kDa endoglucanase (Cel12A). Cel5A had significant Avicelase activity--4.5 nmol glucose equivalents released/min/mg protein. It is a processive endoglucanase, because it hydrolyzed Avicel to cellobiose as the major product while introducing only a small proportion of reducing sugars into the remaining, insoluble substrate. Therefore, since G. trabeum is already known to produce a beta-glucosidase, it is now clear that this brown rot fungus produces enzymes capable of yielding assimilable glucose from crystalline cellulose.  相似文献   

11.
Cytophaga hutchinsonii is a Gram-negative aerobic soil bacterium which can digest crystalline cellulose completely through a strategy different from that of the well-studied cellulolytic aerobic fungi and anaerobic bacteria. However, despite the availability of a published genome sequence, studies on this organism have been very limited because of the lack of a genetic manipulation system. This paper describes the development of replicative oriC plasmids, carrying the replication origin of the C. hutchinsonii chromosome, and an electroporation method for Escherichia coliC. hutchinsonii shuttle vectors based on oriC plasmids with an efficiency of about 2 × 104 transformants per microgram plasmid DNA. Heterologous proteins, including green fluorescent protein and β-galactosidase, were expressed successfully and proved functional in C. hutchinsonii under the control of the CHU_1284 promoter in oriC plasmids. Finally, the gene CHU_0344, encoding the main extracellular protein, was targeted by homologous recombination based on the oriC plasmid. These genetic techniques and tools will provide a means to study the novel cellulose degradation system of C. hutchinsonii.  相似文献   

12.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

13.
One endo-β-1,4-glucanase (EC 3.2.1.4) and two unique β-glucosidases (EC 3.2.1.21) have been isolated from culture filtrates Robillarda sp. Y-20 by combinations of DEAE A-50 column chromatography and isoelectric focusing. These enzymes were homogeneous on gel filtration, isoelectric focusing and polyacrylamide gel electrophoresis with and without sodium dodecyl sulphate (SDS). The molecular weights of endoglucanase, and the two β-glucosidases, I and II by SDS-polyacrylamide gel electrophoresis were 59000, 76000 and 54000, respectively. The pI values were 3.5, 7.5, and 3.8 for endoglucanase, β-glucosidase I and II, respectively. The major β-glucosidase I was a glycoprotein, but the endoglucanase and β-glucosidase II were not. The endoglucanase rapidly reduced the viscosity of carboxymethyl (CM) cellulose with concomitant production of reducing sugar. The enzyme had very low activity with crystalline cellulose such as insoluble acid treated cellulose, Avicel and filter paper. The endoglucanase attacked celloheptaose to cellotetraose more readily than cellotriose, but did not hydrolyze cellobiose. Both β-glucosidases attacked celloheptaose to cellotetraose more readily than cellotriose and cellobiose, but did not hydrolyze CM-cellulose and insoluble acid treated cellulose. Strong synergism was observed for hydrolysis of CM-cellulose by the endoglucanase and β-glucosidases.  相似文献   

14.
Seven fractions rich in endoglucanase activity were separated from the extracellular cellulase system of the anaerobic rumen fungus Neocallimastix frontalis. The fractions (ES1, ES3, ES2U1, ES2U2, ES2U4, ES2U3C1 and ES2U3C2) were separated from each other and from a fraction that could solubilize crystalline cellulose (the so-called crystalline-cellulose-solubilizing component, CCSC) by the sequential use of differential adsorption on the microcrystalline cellulose Avicel, gel filtration and affinity chromatography on concanavalin-A—Sepharose. The molecular masses of the endoglucanase fractions, when determined by gel filtration, were 64, 30, 61, 113, 17, 38 and 93 kDa respectively. Each enzyme degraded carboxymethylcellulose and was rich in activity to cellulose swollen in phosphoric acid to break the hydrogen bonding: cellobiose, cellotriose and cellotetraose were released in differing proportions. Each fraction showed a characteristic gradient when the capacity of each enzyme to increase the fluidity of a solution of carboxymethylcellulose was plotted against the increase in reducing power of the solution. Although neither endoglucanase fraction, acting in isolation, could degrade crystalline cellulose, three of the fractions (ES1, ES3 and ES2U1) could act synergistically with the CCSC fraction in this regard. Remarkably, the same three fractions also acted in synergism with the cellobiohydrolase (CBH I and CBH II) of the aerobic fungus Penicillium pinophilum in degrading crystalline cellulose, but only when both cellobiohydrolase enzymes were present in the solution along with any one of the three endoglucanases. These observations support the conclusion that the mechanism of action of the cellulase system of N. frontalis in degrading crystalline cellulose may be similar to that operating in the aerobic fungi.  相似文献   

15.
The production of cellulases from Stachybotrys microspora strain (A19) has been improved by fed-batch fermentation on Avicel cellulose 10 mg/ml. An endoglucanase EG2 was purified to homogeneity. This cellulase has a molecular mass estimated to 50 kDa when analyzed by a denaturant gel electrophoresis. It exhibited an optimal activity at 50 °C, pH 7.0 and 0.85 M NaCl. Specifically, these results show the thermo-active, alkali-tolerant and halo-tolerant properties of EG2. In addition, this endoglucanase showed its highest activity on barley-β-glucan, compared to the CMC. Moreover, it was less active on Avicel cellulose. Furthermore, the EG2 activity was stimulated in the presence of EDTA, urea and β-mercaptoethanol whereas it was reduced in the presence of SDS. This cellulase was highly stable in the presence of organic solvents such as acetone and n-hexane. TLC showed that the main hydrolysis products from EG2 were cellobiose and glucose. This fungal endoglucanase could be potentially important in the conversion of grass-derived biomass into fermentable sugars.  相似文献   

16.
Five cellulases were fractionated from a commercial cellulase preparation (CelluclastTM) Two isoenzymes of cellobiohydrolase I (CBHI)(pI = 4.1) could be proved to be real exo-glucanases due to their activity towards MU (=methylumbelliferyl)-lactoside being inhibited by cellobiose (5 mM) and due to production of cellobiose from carboxymethylcellulose (CMC) as the sole final product.Two isoenzymes of CBHII (pI=6.15, 6.0) were shown to act as endo-glucanases because they produced glucose, cellobiose and cellotetraose from CMC and because they were not inhibited by cellobiose when decomposing MU-lactoside. Results confirm recent reports in the literature classifying CBHI and CBHII as exo-type and endo-type cellulases, respectively. Both the CBHI and the CBHII isoenzymes were shown to be active towards CMC and amorphous cellulose.CBHI and CBHII reactions could be differentiated from one another by the velocities of decomposition of CMC: CBHI acts slowly and linearly whereas CBHII acts strongly and exponentially.The fifth of the purified enzymes must be classed as a conventional endoglucanase which exhibits activity towards CMC but fails to be active towards MU-lactoside and amorphous cellulose.  相似文献   

17.

Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.

  相似文献   

18.
Sequence analysis of a Paenibacillus sp. BP-23 recombinant clone coding for a previously described endoglucanase revealed the presence of an additional truncated ORF with homology to family 48 glycosyl hydrolases. The corresponding 3509-bp DNA fragment was isolated after gene walking and cloned in Escherichia coli Xl1-Blue for expression and purification. The encoded enzyme, a cellulase of 1091 amino acids with a deduced molecular mass of 118 kDa and a pI of 4.85, displayed a multidomain organization bearing a canonical family 48 catalytic domain, a bacterial type 3a cellulose-binding module, and a putative fibronectin-III domain. The cloned cellulase, unique among Bacillales and designated Cel48C, was purified through affinity chromatography using its ability to bind Avicel. Maximum activity was achieved at 45 degrees C and pH 6.0 on acid-swollen cellulose, bacterial microcrystalline cellulose, Avicel and cellodextrins, whereas no activity was found on carboxy methyl cellulose, cellobiose, cellotriose, pNP-glycosides or 4-methylumbeliferyl alpha-d-glucoside. Cellobiose was the major product of cellulose hydrolysis, identifying Cel48C as a processive cellobiohydrolase. Although no chromogenic activity was detected from pNP-glycosides, TLC analysis revealed the release of p-nitrophenyl-glycosides and cellodextrins from these substrates, suggesting that Cel48C acts from the reducing ends of the sugar chain. Presence of such a cellobiohydrolase in Paenibacillus sp. BP-23 would contribute to widen up its range of action on natural cellulosic substrates.  相似文献   

19.
Summary The nucleotide sequence of a 2.314 kb DNA segment containing a gene (cedl) expressing cellodextrinase activity from Butyrivibrio fibrisolvens H17c was determined. The B. fibrisolvens H17c gene was expressed from a weak internal promoter in Escherichia coli and a putative consensus promoter sequence was identified upstream of a ribosome binding site and a GTG start codon. The complete amino acid sequence (547 residues) was deduced and homology was demonstrated with the Clostridium thermocellum endoglucanase D (EGD), Pseudomonas fluorescens var. cellulose endoglucanase (EG), and a cellulase from the avocado fruit (Persea americana). The ced1 gene product Cedl showed cellodextrinase activity and rapidly hydrolysed short-chain cellodextrins to yield either cellobiose or cellobiose and glucose as end products. The Cedl enzyme released cellobiose from p-nitrophenyl--d-cellobioside and the enzyme was not inhibited by methylcellulose, an inhibitor of endoglucanase activity. Although the major activity of the Cedl enzyme was that of a cellodextrinase it also showed limited activity against endoglucanase specific substrates [carboxymethylcellulose (CMC), lichenan, laminarin and xylan]. Analysis by SDS-polyacrylamide gel electrophoresis with incorporated CMC showed a major activity band with an apparent M r of approximately 61000. The calculated M r of the ced1 gene product was 61023.Abbreviations Ap ampicillin - ced1 gene coding for Ced1 - Ced1 cellodextrinase from B. fibrisolvens - CMC carboxymethylcellulose - LB Luria Bertani - ORF open reading frame - pNPC p-nitrophenyl--d-cellobioside - PC phosphate citrate - HCA hydrophobic cluster analysis  相似文献   

20.
Major cellulase components—four endoglucanases (Endo I, II, III and IV) and one exoglucanase (Exo II)—were isolated from a commercial cellulase preparation derived from Trichoderma viride by a series of chromatographic procedures. The average molecular weights were determined by SDS-polyacrylamide gel electrophoresis. Endos I, III and IV, with Mrs of 52,000, 42,000 and 38,000, respectively, exhibited a more random hydrolytic mode on carboxymethylcellulose (CMC) than Endo II, which has an Mr of 60,000. Endo II showed low activity towards CMC, but out of the four purified endoglucanases this enzyme had the highest specific activity against Avicel. In the hydrolysis of H3PO4-swollen cellulose by Endos I, III and IV, cellobiose was the major product, but equimolar amounts of glucose and cellobiose were formed by Endo II. Exo II, with an Mr of 62,000, released cellobiose as the main product in the hydrolysis of H3PO4-swollen cellulose, but glucose was negligible. The combination of Endo I, II, III or IV with Exo II resulted in a synergistic effect in the degradation of Avicel at various combination ratios of these enzymes; the specific optimum ratio of endoglucanase to exoglucanase was largely dependent upon the random hydrolytic mode of the endoglucanase. On the other hand, adsorption of cellulase components was found apparently to obey the Langmuir isotherm, and the thermodynamic parameter (ΔH) was calculated from the adsorption equilibrium constant (K). The enthalpies of adsorption of the endoglucanases were in the range of −2.6–−7.2 KJmol−1, much smaller than that of Exo II (−19.4 KJmol−1). This suggest that Exo II shows stronger preferential adsorption than endoglucanases, and that the enthalpy of adsorption will be effective in distinguishing endoglucanase from exoglucanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号