首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary It is proposed that the first entity capable of adaptive Darwinian evolution consisted of a liposome vesicle formed of (1) abiotically produced phospholipidlike molecules; (2) a very few informational macromolecules; and (3) some abiogenic, lipid-soluble, organic molecule serving as a symporter for phosphate and protons and as a means of high-energy-bond generation. The genetic material had functions that led to the production of phospholipidlike materials (leading to growth and division of the primitive cells) and of the carrier needed for energy transduction. It is suggested that the most primitive exploitable energy source was the donation of 2H++2e at the external face of the primitive cell. The electrons were transferred (by metal impurities) to internal sinks of organic material, thus creating, via a deficit, a protonmotive force that could drive both the active transport of phosphate and high-energy-bond formation.This model implies that proton translocation in a closed-membrane system preceded photochemical or electron transport mechanisms and that chemically transferable metabolic energy was needed at a much earlier stage in the development of life than has usually been assumed. It provides a plausible mechanism whereby cell division of the earliest protocells could have been a spontaneous process powered by the internal development of phospholipids. The stimulus for developing this evolutionary sequence was the realization that cellular life was essential if Darwinian survival of the fittest was to direct evolution toward adaptation to the external environment.  相似文献   

2.
Chromogranins (Cgs) are acidic proteins that have been implicated in several physiological processes such as vesicle sorting, the production of bioactive peptides and the accumulation of soluble species inside large dense core vesicles (LDCV). They constitute the main protein component in the vesicular matrix of LDCV. This latter characteristic of Cgs accounts for the ability of vesicles to concentrate catecholamines and Ca2+. It is likely that Cgs are behind the delay in the neurotransmitter exit towards the extracellular milieu after vesicle fusion, due to their low affinity and high capacity to bind solutes present inside LDCV. The recent availability of mouse strains lacking Cgs, combined with the arrival of several techniques for the direct monitoring of exocytosis, have helped to expand our knowledge about the mechanisms used by granins to concentrate catecholamines and Ca2+ in LDCV, and how they affect the kinetics of exocytosis. We will discuss the roles of Cgs A and B in maintaining the intravesicular environment of secretory vesicles and in exocytosis, bringing together the most recent findings from adrenal chromaffin cells.  相似文献   

3.
Summary Synaptic pinocytotic vesicles (invaginating from the surface membrane) and coated vesicles inside rat mossy fiber endings were counted after the use of different kinds of fixatives. Significantly greater numbers of pinocytotic vesicles and coated pinocytotic vesicles per unit length of membrane were found when osmium was used as the first fixative. A high positive correlation was found between these values and the number of coated vesicles per unit area of mossy fiber ending profiles. These results emphasize the need for caution when considering the theory that in vivo synaptic vesicle recycling involves a coated vesicle invagination of the surface membrane followed by internalisation and loss of coat of the vesicle.The authors are indebted to Mrs. M.L. Brito and M.M. Pacheco and Mr. L.B. Nunes for technical assistance. This work has been supported by I.A.C. (Lisbon)  相似文献   

4.
In photothermal radiometry, heat radiation from an illuminated object, in synchronism with incident chopped light, is observed using an infrared detector with suitable electronics. By thus measuring the heat released during pulse-wise irradiation of leaves, conclusions can be drawn as to the gross efficiency of photosynthesis: More heat means less photochemically stored energy. Saturation of photosynthesis, by employing additional strong continuous-wave background light, affords an internal photothermal radiometry signal reference corresponding to the photochemical zero efficiency level, against which the signal in the absence of saturation can be compared. Through such means, gross energy storage efficiencies approaching 30% have been observed in Caragana arborescens Lam. at low light intensities. Several other examples are given, including measurements on dark-adapted leaves and leaves infiltrated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, to support our conclusion that photothermal radiometry provides a powerful new method for in vivo studies of photosynthesis in whole, attached leaves.  相似文献   

5.
All organisms rely on chemiosmotic membrane systems for energy transduction; the great variety of participating proteins and pathways can be reduced to a few universal principles of operation. This chemical basis of bioenergetics is reviewed with respect to the origin and early evolution of life. For several of the cofactors which play important roles in bioenergetic reactions, plausible prebiotic sources have been proposed, and it seems likely that these cofactors were present before elaborate protein structures. In particular, the hydrophobic quinones require only a membrane-enclosed compartment to yield a minimum chemiosmotic system, since they can couple electron transport and proton translocation in a simple way. It is argued that the central features of modern bioenergetics, such as the coupling of redox reactions and ion translocation at the cytoplasmic membrane, probably are ancient features which arose early during the process of biogenesis. The notion of a thermophile root of the universal phylogenetic tree has been discussed controversially, nevertheless, thermophiles are interesting model organisms for reconstructing the origin of chemiosmotic systems, since they are often acidophiles and anaerobic respirers exploiting iron–sulfur chemistry. This perspective can help to explain the prominent role of iron–sulfur proteins in extant biochemistry as well as the origin of both respiration and proton extrusion within the context of a possible origin of life in the vicinity of hot vents. Received: 6 June 2001 / Accepted: 16 October 2001  相似文献   

6.
Catalyzed polymerization reactions represent a primary anabolic activity of all cells. It can be assumed that early cells carried out such reactions, in which macromolecular catalysts were encapsulated within some type of boundary membrane. In the experiments described here, we show that a template-independent RNA polymerase (polynucleotide phosphorylase) can be encapsulated in dimyristoyl phosphatidylcholine vesicles without substrate. When the substrate adenosine diphosphate (ADP) was provided externally, long-chain RNA polymers were synthesized within the vesicles. Substrate flux was maximized by maintaining the vesicles at the phase transition temperature of the component lipid. A protease was introduced externally as an additional control. Free enzyme was inactivated under identical conditions. RNA products were visualized in situ by ethidium bromide fluorescence. The products were harvested from the liposomes, radiolabeled, and analyzed by polyacrylamide gel electrophoresis. Encapsulated catalysts represent a model for primitive cellular systems in which an RNA polymerase was entrapped within a protected microenvironment.Abbreviations ADP adenosine diphosphate - DMPC dimyristoyl phosphatidylcholine - EDTA ethylenediaminetetraacetic acid - LUV large unilamellar vesicle - MLV multilamellar vesicle - PAGE polyacrylamide gel electrophoresis - PNPase or PNP polynucleotide phosphorylase - SUV small unilamellar vesicle Correspondence to.: A.C. Chakrabarti  相似文献   

7.
Cells somehow evolved from primordial chemistry and their emergence depended on the co-evolution of the cytoplasm, a genetic system and the cell membrane. It is widely believed that the cytoplasm evolved inside a primordial lipid vesicle, but here I argue that the earliest cytoplasm could have co-evolved to high complexity outside a vesicle on the membrane surface. An invagination of the membrane, aided by an early cytoskeletal system, may have formed the first cells--initially within primordial vesicles.  相似文献   

8.
不同生态习性热带雨林树种的幼苗对光能的利用与耗散   总被引:10,自引:2,他引:8  
研究了生长于100%、25%和8%光照条件下的热带雨林先锋树种团花、演替顶极阶段的冠层树种绒毛番龙眼和中下层树种滇南风吹楠幼苗的光合能力及光能分配特性对光强的响应。与绒毛番龙眼和滇南风吹楠相比,团花具有较高的最大光合速率和最大电子传递速率,从光能分配对光强的响应曲线可以看出,随着光强的增加,3个树种幼苗叶片吸收的光能分配到光化学反应的比例减少,分配到热耗散的比例增加,光能在光化学反应与热耗散之间的分配呈显著负相关,与其它两个种相比,100%光下的团花幼苗将较多的光能分配到光化学反应中,热耗散较弱且未达到饱和。过剩光能少,没有引起长期光抑制,绒毛番龙眼和滇南风吹楠将叶片吸收的较多光能分配到热耗散中,但生长于100%光下的幼苗过剩光能仍然较多,导致幼苗遭受长期光抑制,结果表明,不同生态习性热带雨林树种幼苗更新对光环境的要求与这些幼苗对光能的利用和耗散特性密切相关。  相似文献   

9.
Nanoparticles may be taken up into cells via endocytotic processes whereby the foreign particles are encapsulated in vesicles formed by lipid bilayers. After uptake into these endocytic vesicles, intracellular targeting processes and vesicle fusion might cause transfer of the vesicle cargo into other vesicle types, e.g., early or late endosomes, lysosomes, or others. In addition, nanoparticles might be taken up as single particles or larger agglomerates and the agglomeration state of the particles might change during vesicle processing. In this study, liposomes are regarded as simple models for intracellular vesicles. We compared the energetic balance between two liposomes encapsulating each a single silica nanoparticle and a large liposome containing two silica nanoparticles. Analytical expressions were derived that show how the energy of the system depends on the particle size and the distance between the particles. We found that the electrostatic contributions to the total energy of the system are negligibly small. In contrast, the van der Waals term strongly favors arrangements where the liposome snugly fits around the nanoparticle(s). Thus the two separated small liposomes have a more favorable energy than a larger liposome encapsulating two nanoparticles.  相似文献   

10.
A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed.  相似文献   

11.
Capturing and converting solar energy via artificial photosynthesis offers an ideal way to limit society’s dependence on fossil fuel and its myriad consequences. The development and study of molecular artificial photosynthetic reactions centers and antenna complexes and the combination of these constructs with catalysts to drive the photochemical production of a fuel helps to build the understanding needed for development of future scalable technologies. This review focuses on the study of molecular complexes, design of which is inspired by the components of natural photosynthesis, and covers research from early triad reaction centers developed by the group of Gust, Moore, and Moore to recent photoelectrochemical systems capable of using light to convert water to oxygen and hydrogen.  相似文献   

12.
Extracellular vesicles are small (~50–200 nm diameter) membrane-bound structures released by cells from all domains of life. While vesicles are abundant in the oceans, their functions, both for cells themselves and the emergent ecosystem, remain a mystery. To better characterize these particles – a prerequisite for determining function – we analysed the lipid, protein, and metabolite content of vesicles produced by the marine cyanobacterium Prochlorococcus. We show that Prochlorococcus exports a diverse array of cellular compounds into the surrounding seawater enclosed within discrete vesicles. Vesicles produced by two different strains contain some materials in common, but also display numerous strain-specific differences, reflecting functional complexity within vesicle populations. The vesicles contain active enzymes, indicating that they can mediate extracellular biogeochemical reactions in the ocean. We further demonstrate that vesicles from Prochlorococcus and other bacteria associate with diverse microbes including the most abundant marine bacterium, Pelagibacter. Together, our data point toward hypotheses concerning the functional roles of vesicles in marine ecosystems including, but not limited to, possibly mediating energy and nutrient transfers, catalysing extracellular biochemical reactions, and mitigating toxicity of reactive oxygen species.  相似文献   

13.
A general argument is made for the photochemical origins of life. A constant flux of free energy is required to maintain the organized state of matter called life. Solar photons are the unique source of the large amounts of energy probably require to initiate this organization and certainly required for the evolution of life to occur. The completion of this argument will require the experimental determination of suitable photochemical reactions. Our work shows that biogenetic porphyrins readily photooxidize substrates and emit hydrogen in the presence of a catalyst. These results are consistent with the Granick hypothesis, which relates a biosynthetic pathway to its evolutionary origin. We have shown that photoexcitation of ferrous ion at neutral pH with near ultraviolet light produces hydrogen with high quantum yield. This same simple system may reduce carbon dioxide to formaldehyde and further products. These reactions offer a solution to the dilemma confronting the Oparin-Urey-Miller model of the chemical origin of life. If carbon dioxide is the main form of carbon on the primitive earth, the ferrous photoreaction may provide the reduced carbon necessary for the formation of amino acids and other biogenic molecules. These results suggest that this progenitor of modern photosynthesis may have contributed to the chemical origins of life.  相似文献   

14.
Coats and vesicle budding   总被引:9,自引:0,他引:9  
Transport vesicles need coat proteins in order to form. The coat proteins are recruited from the cytosol onto a particular membrane, where they drive vesicle budding and select the vesicle cargo. So far, three types of coated transport vesicles have been purified and characterized, and candidates for components of other types of coats have been identified. This review gives a brief overview of what is known about the various coats and their role in transport vesicle formation.  相似文献   

15.
The importance of sunlight in bringing about not only photosynthesis in plants, but also other photochemical effects, is reviewed. More effort should be devoted to photochemical storage of the sun's energy without the living plant. There is no theoretical reason to believe that such reactions are impossible. Ground rules for searching for suitable solar photochemical reactions are given, and a few attempts are described, but nothing successful has yet been found. Future possibilities are suggested. Photogalvanic cells which convert sunlight into electricity deserve further research. Eugene Rabinowitch has been an active pioneer in these fields.  相似文献   

16.
1. Approximately 150-fold purified phospholipase A2 (PLA2) from bovine seminal vesicle fluid was injected into rabbit to prepare antibodies. 2. Produced antisera blocked PLA2 activity in bovine seminal plasma, seminal vesicles and its fluid and it gave single precipitation lines with the same samples. No cross-reactivity was detected with other reproductive tissues of bull as well as human seminal plasma. 3. Using indirect peroxidase technique PLA2 was localized in the apical part of epithelia cells of the bull seminal vesicle and also some minor immunohistochemical reactions were observed in the tubular lumen. Indirect peroxidase staining gave weak or no reaction at all to seminal vesicles of immature bulls. This suggests that the enzyme may be under hormonal control. 4. By indirect immunofluorescence method ejaculated spermatozoa of bull revealed immunoreaction which was not uniform and it was restricted to the middle piece, acrosome as well as postacrosomal region, but no specific immunostaining could be found on the surface of the epididymal spermatozoa. 5. Enzyme visualization by immunoelectron microscopic labelling showed a predominant localization in membrane particles inside the lumen of bovine seminal vesicle but some gold particles were also seen in granules, larger vacuoles and in cytoplasm of epithelia cells.  相似文献   

17.
The biochemistry of all living organisms uses complex, enzyme-catalyzed metabolic reaction networks. Yet, at life’s origins, enzymes had not yet evolved. Therefore, it has been postulated that non-enzymatic metabolic pathways predated their enzymatic counterparts. In this account article, we describe our recent work to evaluate whether two ancient carbon fixation pathways, the rTCA (reductive tricarboxylic acid) cycle and the reductive AcCoA (Wood-Ljungdahl) pathway, could have operated without enzymes and therefore have originated as prebiotic chemistry. We also describe the discovery of an Fe2+-promoted complex reaction network that may represent a prebiotic predecessor to the TCA and glyoxylate cycles. The collective results support the idea that most central metabolic pathways could have roots in prebiotic chemistry.  相似文献   

18.
A variety of sexual selection mechanisms have been implicated to drive the variability of the male reproductive tract in internal fertilizers, while studies on external fertilizers have been largely limited to exploring the influence of sperm competition on testis size and sperm number. Males in the Gobiidae, a speciose teleost family of demersal spawners with external fertilization, are known to be characterized by accessory structures to the sperm duct called seminal vesicles. These seminal vesicles secrete a mucus-enriched seminal fluid. Seminal vesicle size and function have been demonstrated to be influenced by sperm competition at the intraspecific level. With the aim to test the factors influencing the development of these male organs at the interspecific level, an independent contrast analysis was performed on 12 species, differing in mating system type, sperm competition risk, and duration of egg deposition. The type of mating system appears to be the main factor significantly affecting development of seminal vesicles, with males of monogamous species completely lacking or having extremely reduced organs.  相似文献   

19.
I propose a hypothesis on the origin of chiral homogeneity of bio-molecules based on chiral catalysis. The first chiral active centre may have formed on the surface of complexes comprising metal ions, amino acids, other coenzymes and oligomers (short RNAs). The complexes must have been dominated by short RNAs capable of self-reproduction with ligation. Most of the first complexes may have catalysed the production of nucleotides. A basic assumption is that such complexes can be assembled from their components almost freely, in a huge variety of combinations. This assumption implies that “a few” components can constitute “a huge” number of active centre types. Moreover, an experiment is proposed to test the performance of such complexes in vitro.If the complexes were built up freely from their elements, then Darwinian evolution would operate on the assembly mechanism of complexes. For the production of complexes, first their parts had to appear by forming a proper three-dimensional structure. Three possible re-building mechanisms of the proper geometric structure of complexes are proposed. First, the integration of RNA parts of complexes was assisted presumably by a pre-intron. Second, the binding of RNA parts of a complex may give rise to a “polluted” RNA world. Third, the pairing of short RNA parts and their geometric conformation may have been supported by a pre-genetic code.Finally, an evolutionary step-by-step scenario of the origin of homochirality and a “polluted” RNA world is also introduced based on the proposed combinatorial complex chemistry. Homochirality is evolved by Darwinian selection whenever the efficiency of the reflexive autocatalysis of a dynamical combinatorial library increases with the homochirality of the active centres of reactions cascades and the homochirality of the elements of the dynamical combinatorial library. Moreover, the potential importance of phospholipid membrane is also discussed.  相似文献   

20.
The efficiency of gene transfection mediated by nonviral vectors is limited because of nonoptimal intracellular trafficking of transfecting DNA. Most nonviral vectors deliver transfecting DNA into a cell through endocytosis. However, poor escape from endocytic vesicles and inefficient transport of DNA into the nucleus often limits a success of gene transfection. Photochemical transfection is a new method, based on light-induced permeabilisation of endocytic vesicles, liberating transfecting DNA into the cytosol, concurrently increasing the chances for DNA to enter the nucleus.The aim of this study was to investigate the role of the cell cycle for the efficiency of photochemical transfection. It was demonstrated that in asynchronous human colon carcinoma HCT 116 cells photochemical treatment increased the transfection mediated by the nonviral vectors, the cationic polypeptide polylysine and the cationic lipid N-(2-aminoethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanaminium bromide/dioleoylphosphatidylethanolamine (beta AE-DMRIE/DOPE), by 30- and 2.5-fold, respectively. In aphidicolin-synchronised cells, photochemical transfection mediated by polylysine was dependent on the cell cycle: transfection level was 4-fold higher when illumination, inducing photochemical reactions, was performed during the G2/M phase as compared to the G1/early-S phase. The cell cycle influence on photochemical transfection mediated by beta AE-DMRIE/DOPE was very low: only 20% difference between G2/M and the G1/S phase was observed. We suggest that transgenes, photochemically liberated close/during mitosis, perhaps have the highest opportunity to enter the nucleus and be expressed. However, the dependence of photochemical transfection on the cell cycle might be partially disguised by various factors induced by photochemical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号