首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cytochrome complement of Methylophilus methylotrophus and its respiratory properties were determined during batch culture and in continuous culture under conditions of methanol-, nitrogen- and O2-limitation. About 35% of the cytochrome c produced by the bacteria was released into the growth medium, and of the remaining cytochrome c about half was membrane-bound and half was soluble. Two cytochromes c were always present on membranes (redox potentials 375mV and 310mV), and these probably correspond to the soluble cytochromes c described previously [Cross & Anthony (1980) Biochem. J. 192, 421–427]. A third minor component of cytochrome c (midpoint potential 356mV) was only detected on membranes of methanol-limited bacteria. M. methylotrophus always contained two membrane-bound cytochromes b with α-band absorption maxima of about 556 and 563nm (measured at room temperature) and midpoint potentials of 110 and 60mV respectively. There appeared to be relatively more of the cytochrome b563 in methanol-limited bacteria. A third b-type cytochrome with an α-band absorption maximum at 558 (at 77K) reacted with CO and had a high midpoint redox potential (260mV); it is thus a potential oxidase and hence is called cytochrome o. The roles of these cytochromes in electron transport were confirmed by investigating the patterns of respiratory inhibition. It is proposed that two cytochromes are physiological oxidases: cytochrome a+a3, which is present only in methanol-limited conditions, and the cytochrome o, which is induced 10-fold in conditions of methanol excess. Schemes for electron transport from methanol and NAD(P)H to O2 in M. methylotrophus under various limitations are proposed. Spectra and potentiometric titrations of cytochromes in whole cells and membranes of M. methylotrophus grown under various nutrient limitations have been deposited as Supplementary Publication SUP 50111 (10 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

2.
The effects of phospholipid on the redox behavior of b cytochromes in succinate-cytochrome c reductase, the cytochrome b-c1 complex, and an isolated cytochrome b preparation were investigated by the oxidative and reductive titrations. Three Em values of cytochrome b were observed in the phospholipid-sufftcient and -depleted succinate-cytochrome c reductase. Their midpoint potentials at pH 7.4 are 75, 75, and ?100 mV for the sufficient and 10, ?30, and ?160 mV for the depleted reductase. The molar distribution of the b cytochromes of these Em values correspond to 30, 30, and 40%, respectively. The Em values of the isolated cytochrome b preparations were not affected by addition of phospholipids. The isolated b preparation contained two components of equal concentration with Em values of ?85 and ?200 mV. No direct correlation between enzymic activity and the amount of high potential b cytochromes present in the systems was demonstrated. Very little difference was observed in redox behavior of b cytochromes between the aged inactive preparations of phospholipid-depleted reductase and that of freshly prepared reconstitutively active enzyme.  相似文献   

3.
J.S. Leigh  M. Erecińska 《BBA》1975,387(1):95-106
Succinate-cytochrome c reductase can be easily solubilized in a phospholipid mixture (1:1, lysolecithin:lecithin) in the absence of detergents. The resulting solution contains two b cytochromes with half-reduction potentials of 95 ± 10 mV (b561), and 0 ± 10 mV (b566) and cytochrome c1 (Em 7.2 = +280±5 mV). The oxidation-reduction midpoint potentials obtained by optical potentiometric titrations are identical to those determined by the EPR titrations and are 40–60 mV higher than the corresponding midpoint potentials of these cytochromes in intact mitochondria. In contrast to detergent-suspended preparations, no CO-sensitive cytochrome b can be detected in the phospholipid-solubilized preparation or intact mitochondria. The half-reduction potential of cytochrome b566 is pH-dependent above pH 7.0 (?60 mV/pH unit) while that of b561 is essentially pH-independent from pH 6.7–8.5, in contrast to its pH dependence in intact mitochondria. EPR characterizations show the presence of three oxidized low-spin heme-iron signals with g values of 3.78, 3.41 and 3.37. The identification of these signals with cytochromes b566 (bT), b561 (bK) and c1 respectively is made on the basis of redox midpoint potentials. No significant amounts of oxidized high-spin heme-iron are detectable. In addition, the preparation contains four distinct types of iron-sulfur centers: S1 and S2 (Em 7.4 = ?260 mV and 0 mV), and two iron-sulfur proteins which are associated with the cytochrome b-c1 complex: Rieske's iron-sulfur protein (Em 7.4 = +280 mV) and Ohnishi's Center 5 (Em 7.4 = +35 mV).  相似文献   

4.
Wel-Ping Lu  R.K. Poole  D.P. Kelly 《BBA》1984,767(2):326-334
Cytochromes c-550 (acidic), c-550 (basic), c-551 and c-552.5 from Thiobacillus versutus have been highly purified and characterized. Their spectral properties at 77 K are described. Oxidation-reduction titrations of cytochromes c-550 (acidic) and c-550 (basic) showed them to exhibit Nernst values of n = 1, with single redox centres in the cytochromes, and to have midpoint redox potentials at pH 7.0 (Em,7) of 290 and 260 mV, respectively. Cytochrome c-551 contained two separately titratable redox components, each giving n = 1. The low potential centre (55% of titratable cytochrome) and the high potential centre (45%) had Em,7 values of ?115 and +240 mV, espectively. Cytochrome c-552.5 also contained at least two redox centres. One (65% of titratable cytochrome) had n = 1 and Em,7 = 220mV. The remaining 35% appeared to be a low potential component with an Em,7 possibly as low as ?215 mV. the roles of these cytochromes in respiratory thiosulphate oxidation are discussed.  相似文献   

5.
An analytical technique for the in situ characterization of b- and c-type cytochromes has been developed. From evaluation of the results of potentiometric measurements and spectrum deconvolutions, it was concluded that an integrated best-fit analysis of potentiometric and spectral data gave the most reliable results. In the total cytochrome b content of cytoplasmic membranes from aerobically grown Escherichia coli, four major components are distinguished with α-band maxima at 77 K of 555.7, 556.7, 558.6 and 563.5 nm, and midpoint potentials at pH 7.0 of 46, 174, ?75 and 187 mV, respectively. In addition, two very small contributions to the α-band spectrum at 547.0 and 560.2 nm, with midpoint potentials of 71 and 169 mV, respectively, have been distinguished. On the basis of their spectral properties they should be designated as a cytochrome c and a cytochrome b, respectively. In Complex III, isolated from beef heart mitochondria, five cytochromes are distinguished: cytochrome c1 (Λm(25°C) = 553.5 nm; E0 = 238 mV) and four cytochromes bΛm(25°C) = 558.6, 561.2, 562.1, 566.1 nm and E0 = ?83, 26, 85, ?60 mV).  相似文献   

6.
Thiobacillus tepidarius was shown to contain cytochrome(s) c with absorption maxima at 421, 522 and 552 nm in room temperature reduced minus oxidized difference spectra, present at 1.1–1.2 nmol per mg dry wt and present in both membrane and soluble fractions of the cell. The membrane-bound cytochrome c (1.75 nmol per mg membrane protein) had a midpoint potential (Em, pH 7.0) of 337 mV, while the soluble fractions appeared to contain cytochrome(s) c with Em (pH 7.0) values of about 270 and 360 mV. The organism also contained three distinct membrane-bound b-type cytochromes (totalling 0.33 nmol per mg membrane protein), each with absorption maxima in reduced minus oxidized difference spectra at about 428, 532 and 561 nm. The Em (pH 7.0) values for the three cytochromes b were 8 mV (47.8% of total), 182 mV (13.7%) and 322 mV (38.5%). No a- or d-type cytochromes were detectable spectrophotometrically in the intact organism or its membrane and soluble fractions. Evidence is presented for both CO-binding and CO-unreactive cytochromes b or o, and CO-binding cytochrome(s) c. From redox effects observed with CO it is proposed that a cytochrome c donates electrons to a cytochrome b, and that a high potential cytochrome b or o may be acting as the terminal oxidase in substrate oxidation. This may be the 445 nm pigment, a photodissociable CO-binding membrane haemoprotein. Substrate oxidation was relatively insensitive to CO-inhibition, but strongly inhibited by cyanide and azide. Thiosulphate oxidation couples directly to cytochrome c reduction, but tetrathionate oxidation is linked (probably via ubiquinone Q-8) to reduction of a cytochrome b of lower potential than the cytochrome c. The nature of possible electron transport pathways in Thiobacillus tepidarius is discussed. One speculative sequence is: c b8 b182 c270 c337 b322/c360 O2 Abbreviations Em midpoint electrode potential - E inf0 sup pH 7, standard electrode potential at pH 7.0 - Q-8 coenzyme Q-8 (ubiquinone-40)  相似文献   

7.
1. The effects of varying the ambient oxidation/reduction potential on the redox changes of cytochromes c, cytochromes b and P605 induced by a laser flash in chromatophores from Rhodopseudomonas capsulata Ala Pho+ have been investigated.2. The appearance and attenuation of the changes with varying ambient redox potential show that, of the cytochromes present, cytochromes c with Em7 = 340 mV and 0 mV, and cytochrome b, Em7 = 60 mV were concerned with photosynthetic electron flow.3. The site of action of antimycin was shown to be between cytochrome b60 and a component, as yet unidentified, called Z.4. The appearance or attenuation of laser-induced changes of cytochromes c0 and b60 on redox titration was dependent on pH, but no effect of pH on the cytochrome c340 titration was observed.5. The dependence on ambient redox potential of the laser-induced bleaching at 605 nm enabled identification of the mid-point potentials of the primary electron donor (Em7 = 440 mV) and acceptor (Em7 = ?25 mV).6. The interrelationship of these electron carriers is discussed with respect to the pathway of cyclic electron flow.  相似文献   

8.
The properties of the mitochondrial succinate-cytochrome c reductase   总被引:2,自引:0,他引:2  
The cytochromes b and bT of pigeon heart mitochondria have half-reduction potentials (Em's) of +30 mV and −30 mV at pH 7.2. The midpoint potentials of these cytochromes become more negative by 30–60 mV per pH unit when the pH is made more alkaline. Detergents may be used to prepare a succinate-cytochrome c reductase free of cytochrome oxidase in which the activation of electron transport induced by oxidation of cytochrome c1 causes the half-reduction potential of cytochrome bT to become at least 175 mV more positive than in the absence of electron transport. This change is interpreted as indicating that the primary energy conservation reaction at site 2 remains fully functional in the purified reductase. Preliminary electron paramagnetic resonance spectra of the succinate-cytochrome c reductase as measured at near liquid helium temperatures are presented.  相似文献   

9.
Biochemical aspects of b-type cytochromes in swine cerebral microsomes were different from those of cytochrome b5 in liver microsomes, as well as the difference in absorption spectra. First, the kinetic constants, Km and Vmax, in rotenone-insensitive NADH-cytochrome c reductase activity were different from those of liver microsomes, and the activity of cerebral microsomes was higher than that of liver microsomes. Second, midpoint potentials (Em) of b-type cytochromes in cerebral microsomes were measured and compared with liver microsomal cytochrome b5. In cerebral microsomes two components of b-type cytochromes were resolved, and showed Em's of ?30 and +50 mV, respectively, in the presence of 2 mm KCN. On the other hand, the Em of liver microsomal cytochrome b5 was ?6 mV. The high-potential component of cerebral microsomal b-type cytochromes was identified as brain-b′5 [S. Yoshida, T. Yubisui, and M. Takeshita (1983)Biochem. Int. 7, 291–298] and the low-potential component as brain-b5. The significance of the difference between cerebral and liver microsomal b-type cytochromes was discussed.  相似文献   

10.
Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the b-heme was determined by optical titration (Em + 234 ± 10 mV). A profile of periplasmic c-type cytochromes expressed in T. selenatis under selenate respiring conditions was undertaken. Two c-type cytochromes were purified (∼24 and ∼6 kDa), and the 24-kDa protein (cytc-Ts4) was shown to donate electrons to SerABC in vitro. Protein sequence of cytc-Ts4 was obtained by N-terminal sequencing and liquid chromatography-tandem mass spectrometry analysis, and based upon sequence similarities, was assigned as a member of cytochrome c4 family. Redox potentiometry, combined with UV-visible spectroscopy, showed that cytc-Ts4 is a diheme cytochrome with a redox potential of +282 ± 10 mV, and both hemes are predicted to have His-Met ligation. To identify the membrane-bound electron donors to cytc-Ts4, growth of T. selenatis in the presence of respiratory inhibitors was monitored. The specific quinol-cytochrome c oxidoreductase (QCR) inhibitors myxothiazol and antimycin A partially inhibited selenate respiration, demonstrating that some electron flux is via the QCR. Electron transfer via a QCR and a diheme cytochrome c4 is a novel route for a member of the DMSO reductase family of molybdoenzymes.  相似文献   

11.
The object of this work was to test the suggestion that the equilibrium poise between cytochromea and cytochromec in mitochondria might be influenced by the membrane potential.
  1. The midpoint potentials of cytochromes (c+c 1) and cytochromea (CO present) were found to be 250 mV and 245 mV, respectively, by equilibrating rat liver mitochondria with mixtures of ferrocyanide and ferricyanide anaerobically in presence of antimycin A and measuring the redox state of the cytochromes spectrophotometrically. In absence of CO, cytochrome oxidase gave an anomalous redox titration curve with a “midpoint” at about 275 mV.
  2. When the mitochondria were equilibrated with ferricyanide/ferrocyanide, the redox poise of cytochromea (CO present) and of cytochromes (a+a 3) but not of cytochromes (c+c 1) was dependent on the sign and magnitude of the membrane potential developed by treating the mitochondria as follows: by adding ATP, by chaging the composition of the suspension medium so as to vary the Donnan or Nernst potential, by adding valinomycin in a medium of low K+ ion content, or by adding a pulse of acid or alkali when the membrane was made permeable to protons with FCCP.
  3. The findings agree with the suggestion that the respiratory chain is arranged across the cristae membrane with cytochromesc 1 andc in contact with the outer phase and cytochromesa anda 3 plugged through, so that the equilibrium distribution of electrons between thec anda cytochromes is influenced by the electric field across the membrane.
  相似文献   

12.
Oxidation-reduction titrations of several electron carriers found in chloroplast Photosystem I fragments have been performed. The midpoint potential of P700 in these fragments and in chloroplasts has been found to be +520 mV by optical absorbance methods or electron paramagnetic resonance spectroscopy. The copper-containing protein plastocyanin is present in Photosystem I fragments and has a midpoint potential of +320 mV, significantly less positive than the midpoint potential of cytochrome f in the same fragments, which was measured to be +375 mV. Photo-system I fragments contain two b cytochromes, a low-potential form of cytochrome b559 (Em = +110 mV) and cytochrome b563 (Em = ?100 mV).  相似文献   

13.
The homoacetogenic bacteria Sporomusa ovata and Sporomusa sphaeroides were grown on betaine, betaine + formate, and acetoin in the absence of carbon dioxide, and the formation of membrane-bound cytochromes was determined. In S. sphaeroides, the growth substrate had little influence on the expression of cytochromes. In contrast, membranes from betaine-or acetoin-grown S. ovata cells had an 11-or 3-fold higher cytochrome b content than cells grown on betaine + formate. The cytochrome c content was reduced below the detection level after growth on the latter two substrates. The cytochromes in the membranes of S. sphaeroides and S. ovata were characterized by low-temperature difference spectroscopy, hemochrome difference spectroscopy, and redox potentiometry. Membranes of S. ovata were shown to contain two b-type cytochromes with Em,7=-153±10 mV and Em,7=-226±14 mV and two c-type cytochromes with Em,7=-86±6 mV and Em,7=-265±10 mV. In S. sphaeroides also two b-type cytochromes with Em,7=-165±7 mV and Em,7=-241±2 mV and two c-type cytochromes with Em,7=-101±4 mV and Em, 8.5=-338±9 mV could be distinguished. Cell extracts of S. sphaeroides were shown to contain all the enzymes of the acetyl-CoA (Wood) pathway. The degradation pathways of the substrates tested and the possible role of the cytochromes are discussed.Abbreviations Em,7 midpoint potential at pH 7 and 25°C - H4F tetrahydrofolate  相似文献   

14.
Photosynthetic electron transfer has been examined in whole cells, isolated membranes and in partially purified reaction centers (RCs) of Roseicyclus mahoneyensis, strain ML6 and Porphyrobacter meromictius, strain ML31, two species of obligate aerobic anoxygenic phototrophic bacteria. Photochemical activity in strain ML31 was observed aerobically, but the photosynthetic apparatus was not functional under anaerobic conditions. In strain ML6 low levels of photochemistry were measured anaerobically, possibly due to incomplete reduction of the primary electron acceptor (QA) prior to light excitation, however, electron transfer occurred optimally under low oxygen conditions. Photoinduced electron transfer involves a soluble cytochrome c in both strains, and an additional reaction center (RC)-bound cytochrome c in ML6. The redox properties of the primary electron donor (P) and QA of ML31 are similar to those previously determined for other aerobic phototrophs, with midpoint redox potentials of +463 mV and −25 mV, respectively. Strain ML6 showed a very narrow range of ambient redox potentials appropriate for photosynthesis, with midpoint redox potentials of +415 mV for P and +94 mV for QA. Cytoplasm soluble and photosynthetic complex bound cytochromes were characterized in terms of apparent molecular mass. Fluorescence excitation spectra revealed that abundant carotenoids not intimately associated with the RC are not involved in photosynthetic energy conservation.  相似文献   

15.
Naturally grown Beggiatoa filaments, occurring in massive near-mono-cultures at a “black smoker” wall of the Guaymas Basin hydrothermal vent site, were harvested and used for the analysis of their cytochromes. The cytochromes have been characterized by gel permeation chromatography, optical spectroscopy and redox potentiometry. Only c-type cytochromes were detected; a small, high potential cytochrome c that seems typical of its class, and a large complex (Mr 210,000) containing at least four thermodynamically distinct c-type hemes, which was partially dissociated by chromatography on DEAE-Sepharose. The hemes of the large complex have appropriate oxidation-reduction midpoint potentials (Em7 +240 mV, +15 mV,-160 mV,-340 mV) to be involved in the metabolism of sulfide, which is presumed to be the source of reductant for this organism.  相似文献   

16.
Two c-type cytochromes from Chromatium vinosum have been partially purified and characterized. Cytochrome c550, which appears to function as an electron carrier in the cyclic electron transport chain of this photosynthetic purple sulfur bacterium, has a molecular weight of approximately 15,000 and an oxidation-reduction midpoint potential (Em) of + 240 mV at pH 7.4. It has (in the reduced form) an α band at 550 nm and a β band at 520 nm. Cytochrome c551 is characterized by absorbance maxima at 354 and 409 nm in the oxidized form and 418, 523, and 551 nm in the reduced form. The reduced cytochrome reacts with CO. Cytochrome c551 is a monomeric protein with a molecular weight of 18,800 ± 700 and Em = ?299 ± 5 mV (pH independent between pH 6.3 and 8.0). It appears to lack a methionine axial ligand as indicated by the absence of an absorbance band at 695 nm in the oxidized form.  相似文献   

17.
SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys, and active site His/CysS-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS) ligand to the active site heme. This provides the first evidence for the dissociation of CysS that has been proposed as a key event in SoxAX catalysis.  相似文献   

18.
The midpoint redox potential of cytochrome c and the electron paramagnetic resonance spectra of nitroxide labeled cytochromes c were measured as a function of binding to purified cytochrome c oxidase, cytochrome c peroxidase, cytochrome b5 and succinate—cytochrome c reductase. The midpoint redox potential of horse heart cytochrome c is lowered in the presence of cytochrome c oxidase and succinate-cytochrome c reductase, but is unchanged in the presence of cytochrome c peroxidase or cytochrome b5. Further evidence of binding is afforded by an increase in correlation time, Tc, of the spin-labeled cytochrome c at methionine 65 upon binding to cytochrome c peroxidase, cytochrome c oxidase and succinate—cytochrome c reductase. The changes in midpoint redox potential and electron paramagnetic resonance spectrum of the spin-labeled derivative upon binding can either be the consequence of specific interaction leading to formation of ES complexes, or it can be due to nonspecific electrostatic interaction between positively charged groups on cytochrome c and negatively charged groups on the isolated cytochrome preparations.  相似文献   

19.
The Rieske 2Fe2S cluster of Chlorobium limicola forma thiosulfatophilum strain tassajara was studied by electron paramagnetic resonance spectroscopy. Two distinct orientations of its g tensor were observed in oriented samples corresponding to differing conformations of the protein. Only one of the two conformations persisted after treatment with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. A redox midpoint potential (Em) of +160 mV in the pH range of 6 to 7.7 and a decreasing Em (−60 to −80 mV/pH unit) above pH 7.7 were found. The implications of the existence of differing conformational states of the Rieske protein, as well as of the shape of its Em-versus-pH curve, in green sulfur bacteria are discussed.  相似文献   

20.
1. The cytochromes of chromatophores from photosynthetically grown Rhodopseudomonas capsulata have been characterised both spectrally, using the carotenoid free mutant Ala Pho+, and thermodynamically, using the technique of redox titrations. Five cytochromes were present; two cytochromes b, E0 = 60 mV at pH 7.0; and three cytochromes c, E0 = 340 mV, Et?0 = 120 mV, E0 = 0 mV at pH 7.0.2. Redox titrations at different values of pH indicated that the mid point potentials of all the cytochromes varied with pH over some parts of the range between pH 6 and 9, with the possible exception of cytochrome c340.3. The effects of succinate and NADH on the steady state reduction of the cytochromes are reported. Succinate could reduce cytochromes c340, c120 and b60; NADH could reduce cytochromes c340, c120, b60 and b?25. Cytochrome c0 could be reduced by dithionite but not by the other substrates tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号