首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability and structure of RNA duplexes with consecutive A.C, C.A, C.C, G.G, U.C, C.U, and U.U mismatches were studied by UV melting, CD, and NMR. The results are compared to previous results for GA and AA internal loops [SantaLucia, J., Kierzek, R., & Turner, D. H. (1990) Biochemistry 29, 8813-8819; Peritz, A., Kierzek, R., & Turner, D.H. (1991) Biochemistry 30, 6428-6436)]. The observed order for stability increments of internal loop formation at pH 7 is AG = GA approximately UU greater than GG greater than or equal to CA greater than or equal to AA = CU = UC greater than or equal to CC greater than or equal to AC. The results suggest two classes for internal loops with consecutive mismatches: (1) loops that stabilize duplexes and have strong hydrogen bonding and (2) loops that destabilize duplexes and may not have strong hydrogen bonding. Surprisingly, rCGCUUGCG forms a very stable duplex at pH 7 in 1 M NaCl with a TM of 44.8 degrees C at 1 x 10(-4) M and a delta G degrees 37 of -7.2 kcal/mol. NOE studies of the imino protons indicate hydrogen bonding within the U.U mismatches in a wobble-type structure. Resonances corresponding to the hydrogen-bonded uridines are located at 11.3 and 10.4 ppm. At neutral pH, rCGCCCGCG is one of the least stable duplexes with a TM of 33.2 degrees C and delta G degrees 37 of -5.1 kcal/mol. Upon lowering the pH to 5.5, however, the TM increases by 12 degrees C, and delta G degrees 37 becomes more favorable by 2.5 kcal/mol. The pH dependence of rCGCCCGCG may be due to protonation of the internal loop C's, since no changes in thermodynamic parameters are observed for rCGCUUGCG between pH 7 and 5.5. Furthermore, two broad imino proton resonances are observed at 10.85 and 10.05 ppm for rCGCCCGCG at pH 5.3, but not at pH 6.5. This is also consistent with C.C+ base pairs forming at pH 5.5. rCGCCAGCG and rGGCACGCC have a small pH dependence, with TM increases of 5 and 3 degrees C, respectively, upon lowering the pH from 7 to 5.5. rCGCCUGCG and rCGCUCGCG also show little pH dependence, with TM increases of 0.8 and 1.4 degrees C, respectively, upon lowering the pH to 5.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
V Dao  R H Guenther  P F Agris 《Biochemistry》1992,31(45):11012-11019
The tDNA(Phe)AC, d(CCAGACTGAAGAU13m5C14U15GG), with a DNA sequence similar to that of the anticodon stem and loop of yeast tRNA(Phe), forms a stem and loop structure and has an Mg(2+)-induced structural transition that was not exhibited by an unmodified tDNA(Phe)AC d(T13C14T15) [Guenther, R. H., Hardin, C. C., Sierzputowska-Gracz, H., Dao, V., & Agris, P. F. (1992) Biochemistry (preceding paper in this issue)]. Three tDNA(Phe)AC molecules having m5C14, tDNA(Phe)AC d(U13m5C14U15), d(U13m5C14T15), and d(T13,5C14U15), also exhibited Mg(2+)-induced structural transitions and biphasic thermal transitions (Tm approximately 23.5 and 52 degrees C), as monitored by CD and UV spectroscopy. Three other tDNA(Phe)AC, d(T13C14T15), d(U13C14U15), and d(A7;U13m5C14U15) in which T7 was replaced with an A, thereby negating the T7.A10 base pair across the anticodon loop, had no Mg(2+)-induced structural transitions and only monophasic thermal transitions (Tm of approximately 52 degrees C). The tDNA(Phe)AC d(U13m5C14U15) had a single, strong Mg2+ binding site with a Kd of 1.09 x 10(-6) M and a delta G of -7.75 kcal/mol associated with the Mg(2+)-induced structural transition. In thermal denaturation of tDNA(Phe)AC d(U13m5C14U15), the 1H NMR signal assigned to the imino proton of the A5.dU13 base pair at the bottom of the anticodon stem could no longer be detected at a temperature corresponding to that of the loss of the Mg(2+)-induced conformation from the CD spectrum. Therefore, we place the magnesium in the upper part of the tDNA hairpin loop near the A5.dU13 base pair, a location similar to that in the X-ray crystal structure of native, yeast tRNA(Phe).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The oligomer d(GCCGCAGC) can adopt two different conformations: i) a duplex with two mismatched A.C base pairs and ii) a hairpin with two C.G base pairs and a single stranded loop. We report molecular mechanics, normal mode analysis, and thermodynamic stability calculations for both structures. We show that the energy-minimized structure and harmonic-dynamics results are in complete agreement with the observed NOE spectrum and imino proton exchange data. We conclude that the high stability of the hairpin structure over the duplex at low salt concentration is due to the higher vibrational entropy contribution to the system free energy by the single stranded loop and to the lack of minor groove phosphate/phosphate electrostatic repulsions that tend to destabilize the duplex.  相似文献   

4.
J D Puglisi  J R Wyatt  I Tinoco 《Biochemistry》1990,29(17):4215-4226
The hairpin conformation adopted by the RNA sequence 5'GCGAUUUCUGACCGCC3' has been studied by one- and two-dimensional NMR spectroscopy. Exchangeable imino spectra in 60 mM Na+ indicate that the hairpin has a stem of six base pairs (indicated by boldface type) and a loop of three nucleotides. NOESY spectra of nonexchangeable protons confirm the formation of the stem region. The duplex has an A-conformation and contains an A.C apposition; a G.U base pair closes the loop region. The stem nucleotides have C3'-endo sugar conformations, as expected of an A-form duplex, whereas the three loop nucleotides adopt C2'-endo sugar puckers. Stacking within the loop, C8 upon the sugar of U7, stabilizes the structure. The pH dependence of both the exchangeable and nonexchangeable NMR spectra is consistent with the formation of an A+.C base pair, protonated at the N1 position of adenine. The stability of the hairpin was probed by using absorbance melting curves. The hairpin structure with the A+.C base pair is about +2 kcal/mol less stable in free energy at 37 degrees C than the hairpin formed with an A.U pair replacing the A+.C pair.  相似文献   

5.
L H Chang  A G Marshall 《Biochemistry》1986,25(10):3056-3063
Three distinct G.U base pairs in Bacillus subtilis 5S RNA have been identified via homonuclear Overhauser enhancements (NOE) of their low-field (9-15 ppm) proton Fourier transform nuclear magnetic resonances at 11.75 T. With these G.U resonances as starting points, short segments of NOE connectivity can be established. One G.U-G.C-G.C segment (most probably G4.C112-G5.C111-U6.G110) can definitely be assigned to the terminal helix. The existence of at least part of the terminal helical stem of the secondary structure of a Gram-positive bacterial 5S RNA has thus been established for the first time by direct experimental observation. Addition of Mg2+ produces almost no conformational changes in the terminal stem but results in major conformational changes elsewhere in the structure, as reflected by changes in the 1H 500-MHz low-field NMR spectrum. Assignment of the two remaining G.U base pairs will require further experiments (e.g., enzymatic-cleavage fragments). Finally, the implications of these results for analysis of RNA secondary structure are discussed.  相似文献   

6.
d(A-G)10 forms two helical structures at neutrality, at low ionic strength a single-hairpin duplex, and at higher ionic strength a double-hairpin tetraplex. An ionic strength-dependent equilibrium between these forms is indicated by native PAGE, which also reveals additional single-stranded species below 0.3 M Na+, probably corresponding to partially denatured states. The equilibrium also depends upon oligomer concentration: at very low concentrations, d(A-G)10 migrates faster than the random coil d(C-T)10, probably because it is a more compact single hairpin; at high concentrations, it co-migrates with the linear duplex d(A-G)10 x d(C-T)10, probably because it is a two-hairpin tetraplex. Molecular weights measured by equilibrium sedimentation in 0.1 M Na+, pH 7, reveal a mixture of monomer and dimer species at 1 degree C, but only a monomer at 40 degrees C; in 0.6 M Na+, pH 7, only a dimer species is observed at 4 degrees C. That the single- and double-stranded species are hairpin helices, is indicated by preferential S1 nuclease cleavage at the center of the oligomer(s), i.e., the loop of the hairpin(s). The UV melting transition below 0.3 M Na+ or K+, exhibits a dTm/dlog[Na+/K+] of 33 or 36 degrees C, respectively, consistent with conversion of a two-hairpin tetraplex to a single-hairpin duplex with extrahelical residues. When [Na+/K+] > or = 0.3 M, dTm/dlog [Na+/K+] is 19 or 17 degrees C, respectively, consistent with conversion of a two-hairpin tetraplex directly to single strands. A two-hairpin structure stabilized by G-tetrads is indicated by differential scanning calorimetry in 0.15 M Na+/5 mM Mg2+, with deltaH of formation per mole of the two-hairpin tetraplex of -116.9 kcal or -29.2 kcal/mol of G-tetrad.  相似文献   

7.
R Yamasaki  B Bacon 《Biochemistry》1991,30(3):851-857
The solution conformations of the group B polysaccharide of Neisseria meningitidis were analyzed by DQF-COSY and pure absorption 2D NOE NMR with three mixing times. The pyranose ring of the sialic acid residue was found to be in the 2C5 conformation. The DQF-COSY analysis indicated that the orientations of H6 and H7 and of H7 and H8 are both gauche. In order to overcome the difficulties in analyzing the NOE data due to the two sets of proton overlaps, molecular modeling of alpha-2,8-linked sialic acid oligomers was carried out to investigate possible conformers, and theoretical NOE calculations were performed by using CORMA (complete relaxation matrix analysis). Our analysis suggests that the polysaccharide adopts helical structures for which the phi (defined by O6-C2-O8-C8) and psi (C2-O8-C8-C7) angles are in the following ranges: phi -60 to 0 degrees, psi 115-175 degrees or phi 90-120 degrees, psi 55-175 degrees. The weak affinity of anti-B antibodies for smaller alpha-2,8-linked oligosaccharides may be due to the fact that such oligomers are more flexible and may not form an ordered structure as the poly(sialic acid) does.  相似文献   

8.
RNA hairpin loop stability depends on closing base pair.   总被引:7,自引:4,他引:3       下载免费PDF全文
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGXAUAAUAYCC, where X and Y are CG, GC, AU, UA, GU, or UG. A nearest neighbor analysis of the data indicates the free energy change for loop formation at 37 degrees C, delta degrees Gl,37, averages 3.4 kcal/mol for hairpin loops closed with C.G, G.C, and G.U pairs. In contrast, delta G degree l,37 averages 4.6 kcal/mol for loops closed with A.U, U.A, or U.G pairs. Thus the stability of an RNA hairpin depends on the closing base pair. The hairpin with a GA mismatch that is formed by GGCGUAAUAGCC is more stable than the corresponding hairpin with an AA mismatch. Thus hairpin stability also depends on loop sequence. These effects are not included in current algorithms for prediction of RNA structure from sequence.  相似文献   

9.
We have determined the solution structure of a TCC-loop hairpin in the cruciform promoter for the bacteriophage N4 virion RNA polymerase (N4 vRNAP). This hairpin and its complementary GGA-loop hairpin are extruded at physiological superhelical density and are required for vRNAP recognition. Contrary to its complementary GGA-loop, the three pyrimidines in the TCC-loop are all unpaired. However, with the help of two juxtaposed stem Watson-Crick G.C base-pairs, each nucleotide in the loop employs a special method to stabilize the hairpin structure. The resulting structures display extensive loop base-stacking rearrangement yet minor backbone distortion, which is largely accomplished through some loop zeta and alpha torsional angle changes. Consistent with the structural studies, UV melting of the GAAGCTCCGCTTC hairpin revealed a higher melting temperature (66 degrees C) than that of the GAACGTCCCGTTC hairpin (58 degrees C) with reversed stem G.C base-pairs, indicating significant contribution from the extra three loop-stem H-bonds. Thermodynamic parameters DeltaG degrees 25of the GAAGCTCCGCTTC hairpin and its complementary GAAGCGGAGCTTC hairpin are -4.1 and -4. 3 kcal/mol respectively, indicating approximately equal contribution of each hairpin to the cruciform formation of the N4 virion RNA polymerase promoter. No significant loop dynamics in the microsecond to millisecond NMR time-scale was observed, and the abundant well-defined exchangeable and non-exchangeable proton NOEs allowed us to efficiently determine a well-converged family for the final structures of the TCC-loop hairpin.  相似文献   

10.
Methylphosphonate-modified oligo-2'-O-methylribonucleotides 15-20 nucleotides (nt) in length were prepared whose sequences are complementary to the 5' and 3' sides of the upper hairpin of HIV trans-acting response element (TAR) RNA. These anti-TAR oligonucleotides (ODNs) form stable hairpins whose melting temperatures (Tm) range from 55 degrees C to 80 degrees C. Despite their rather high thermal stabilities, the hairpin oligo-2'-O-methylribonucleotides formed very stable complexes with TAR RNA, with dissociation constants in the nanomolar concentration range at 37 degrees C. The affinities of the hairpin oligomers for TAR RNA were influenced by the positions of the methylphosphonate linkages. The binding affinity was reduced approximately 17-fold by the presence of two methylphosphonate linkages in the TAR loop complementary region (TLCR) of the oligomer, whereas methylphosphonate linkages outside this region increased binding affinity approximately 3-fold. The configurations of the methylphosphonate linkages in the TLCR also affected binding affinity, with the RpRp isomer showing significantly higher binding than the SpSp isomer. In addition to serving as probes of the interactions between the oligomer and TAR RNA, the presence of the methylphosphonate linkages in combination with the hairpin structure increases the resistance of these oligomers to degradation by exonucleases found in mammalian serum. The combination of high binding affinity and nuclease resistance of the hairpin ODNs containing methylphosphonate linkages suggests their potential utility as antisense compounds.  相似文献   

11.
P Pramanik  N Kanhouwa  L S Kan 《Biochemistry》1988,27(8):3024-3031
Three DNA fragments, CCAATTTTGG (1), CCAATTTTTTGG (2), and CCATTTTTGG (3), were studied by proton NMR spectroscopy in aqueous solution. All these oligodeoxyribonucleotides contain common sequences at the 5' and 3' ends (5'-CCA and TGG-3'). 2 as well as 3 forms only hairpin structures with four unpaired thymidylyl units, four and three base pair stems, respectively, in neutral solution under low and high NaCl concentrations. At high salt concentration the oligomer 1 forms a duplex structure with -TT- internal loop. On the other hand, the same oligomer forms a stable hairpin structure at low salt and low strand concentrations at pH 7. The hairpin structure of 1 has a stem containing only three base pairs (CCA.TGG) and a loop containing four nucleotides (-ATTT-) that includes a dissociated A.T base pair. The two secondary structures of 1 coexist in an aqueous solution containing 0.1 M NaCl, at pH 7. The equilibrium shifts to the hairpin side when the temperature is raised. The stabilities and base-stacking modes of all three oligonucleotides in two different structures are reported.  相似文献   

12.
Hamma T  Miller PS 《Biochemistry》1999,38(46):15333-15342
Oligonucleotide analogues 15-20 nucleotides in length have been prepared, whose sequences are complementary to nucleotides in the upper hairpin of HIV TAR RNA. These alternating oligonucleoside methylphosphonates, mr-AOMPs, contain 2'-O-methylribonucleosides and alternating methylphosphonate and phosphodiester internucleotide linkages. The methylphosphonate and phosphodiester linkages of these oligomers are highly resistant to hydrolysis by exonuclease activity found in mammalian serum and to endonucleases, such as S1 nuclease. The oligomers were prepared using automated phosphoramidite chemistry and terminate with a 5'-phosphate group, which provides an affinity handle for purification by strong anion exchange HPLC. A 15-mer mr-AOMP, 1676, that is complementary to the 5'-side of the TAR RNA hairpin, including the 3-base bulge and 6-base loop region, forms a 1:1 duplex with a complementary RNA 18-mer, mini-TAR RNA. The T(m) of this duplex is 71 degrees C, which is similar to that of the duplex formed by the corresponding all phosphodiester 15-mer. Introduction of two mismatched bases reduces the T(m) by 17 degrees C. The apparent dissociation constant, K(d), for the 1676/mini-TAR RNA duplex as determined by an electrophoretic mobility shift assay at 37 degrees C is 0.3 nM. Oligomer 1676 also binds tightly to the full length TAR RNA target under physiological conditions (K(d) = 20 nM), whereas no binding was observed by the mismatched oligomer. A 19-mer that is complementary to the entire upper hairpin also binds to TAR RNA with a K(d) that is similar to that of 1676, a result that suggests only part of the oligomer binds. When two of the methylphosphonate linkages in the region complementary to the 6-base loop are replaced with phosphodiester linkages, the K(d) is reduced by approximately a factor of 10. This result suggests that interactions between TAR RNA and the oligomer occur initially with nucleotides in the 6-base loop, and that these interactions are sensitive to presence and possibly the chirality of the methylphosphonate linkages in the oligomer. The high affinities of mr-AOMPs for TAR RNA and their resistance to nuclease hydrolysis suggests their potential utility as antisense agents in cell culture.  相似文献   

13.
The secondary structural features in the 70S RNAs of the Prague strain of avian Rous sarcoma virus, subgroup A (PR-RSV-A), and Moloney murine leukemia virus (M-MuLV) were compared by electron microscopy. The PR-RSV-A genome contained two subunits joined by a linkage structure as in the genomes of M-MuLV and other mammalian retroviruses. In both viral genomes, a highly reproducible hairpin occurred at about 70 nucleotides from the 5' end of each subunit and contained 320 +/- 8 nucleotides. The stable point of linkage between the subunits in both viral genomes involved fewer than 50 nucleotides and occurred at 466 +/- 9 nucleotides from the 5' end. This places the linkage about 350 nucleotides further toward the 3' end of the subunit than the binding site of primer tRNA. Another structural feature common to both genomes was a loop in each subunit. In M-MuLV, the loop contained 3.9 +/- 0.10 kilobases (kb) and occurred at a distance of 2.2 +/- 0.05 kb from the 5' end. In PR-RSV-A, the loop was smaller (2.3 +/- 0.10 kb) and further (3.3 +/- 0.10 kb) from the 5' end. When M-MuLV RNA was heated to 70, 85, or 90 degrees C and cooled, the hairpin consistently reformed at the 5' end. No other structures typical of the native molecules reappeared. In RNA samples heated to 70 degrees C, a new loop reproducibly occurred near the 5' end of each subunit, but this loop was not found in samples heated to higher temperatures. Based on all of these findings, we conclude that the genome of PR-RSV-A shares several features with M-MuLV and other mammalian retroviruses and that the primer tRNA molecules are not involved in the linkage of the two subunits in either genome. We also conclude that the dimer linkage and the loops in subunits are typical of the native molecules and that their formation requires a special environment.  相似文献   

14.
J H Kim  A G Marshall 《Biochemistry》1990,29(3):632-640
Three different fragments of Bacillus megaterium ribosomal 5S RNA have been produced by enzymatic cleavage with ribonuclease T1. Fragment A consists of helices II and III, fragment B contains helix IV, and fragment C contains helix I of the universal 5S rRNA secondary structure. All (eight) imino proton resonances in the downfield region (9-15 ppm) of the 500-MHz proton FT NMR spectrum of fragment B have been identified and assigned as G80.C92-G81.C91-G82.C90-A83.++ +U89-C84.G88 and three unpaired U's (U85, U86, and U87) in helix IV by proton homonuclear Overhauser enhancement connectivities. The secondary structure in helix IV of the prokaryotic loop is completely demonstrated spectroscopically for the first time in any native or enzyme-cleaved 5S rRNA. In addition, G21.C58-A20.U59-G19.C60-A18.U61 in helix II, U32.A46-G31.C47-C30.G48-C29.G49 in helix III, and G4.C112-G5.C111-U6.G110 in the terminal stem (helix I) have been assigned by means of NOE experiments on intact 5S rRNA and its fragments A and C. Base pairs in helices I-IV of the universal secondary structure of B. megaterium 5S RNA are described.  相似文献   

15.
S M Chen  A G Marshall 《Biochemistry》1986,25(18):5117-5125
Imino proton resonances in the downfield region (10-14 ppm) of the 500-MHz 1H NMR spectrum of Torulopsis utilis 5S RNA are identified (A X U, G X C, or G X U) and assigned to base pairs in helices I, IV, and V via analysis of homonuclear Overhauser enhancements (NOE) from intact T. utilis 5S RNA, its RNase T1 and RNase T2 digested fragments, and a second yeast (Saccharomyces cerevisiae) 5S RNA whose nucleotide sequence differs at only six residues from that of T. utilis 5S RNA. The near-identical chemical shifts and NOE behavior of most of the common peaks from these four RNAs strongly suggest that helices I, IV, and V retain the same conformation after RNase digestion and that both T. utilis and S. cerevisiae 5S RNAs share a common secondary and tertiary structure. Of the four G X U base pairs identified in the intact 5S RNA, two are assigned to the terminal stem (helix I) and the other two to helices IV and V. Seven of the nine base pairs of the terminal stem have been assigned. Our experimental demonstration of a G X U base pair in helix V supports the 5S RNA secondary structural model of Luehrsen and Fox [Luehrsen, K. R., & Fox, G.E. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2150-2154]. Finally, the base-pair proton peak assigned to the terminal G X U in helix V of the RNase T2 cleaved fragment is shifted downfield from that in the intact 5S RNA, suggesting that helices I and V may be coaxial in intact T. utilis 5S RNA.  相似文献   

16.
H Li  H Yamada    K Akasaka 《Biophysical journal》1999,77(5):2801-2812
The on-line high-pressure cell NMR technique was used to study pressure-induced changes in the tertiary structure and dynamics of a globular protein, basic pancreatic trypsin inhibitor (BPTI). Practically all the proton signals of BPTI were observed with (1)H two-dimensional NMR spectroscopy at 750 MHz at variable pressure between 1 and 2000 bar. Chemical shifts, nuclear Overhauser effect (NOE), and line shapes were used to analyze conformational and dynamic changes of the protein as functions of pressure. Linear, reversible, but nonuniform pressure-induced chemical shift changes of practically all the C(alpha) protons and side chain protons showed that the entire secondary and tertiary structures are altered by pressure within the folded ensemble of BPTI. The high field shift tendency of most side chain proton signals and the increase in NOE intensities of some specific side chain protons indicated a site-specific compaction of the tertiary structure. Pressure dependence of ring flip rates was deduced from resonance line shapes of the slices of the two-dimensional NMR spectrum for ring proton signals of Tyr-35 and Phe-45. The rates of the flip-flop motions were considerably reduced at high pressure, from which activation volumes were determined to be 85 +/- 20 A(3) (or 51.2 ml/mol) and 46 +/- 9 A(3) (or 27.7 ml/mol) for Tyr-35 and Phe-45, respectively, at 57 degrees C. The present experiments confirm that pressure affects the entire secondary and tertiary structures of a globular protein with specific compaction of a core, leading to quite significant changes in slow internal dynamics of a globular protein.  相似文献   

17.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

18.
The 3'-terminal colicin fragments of 16S ribosomal RNA were isolated from Bacillus stearothermophilus and from its kasugamycin-resistant (ksgA) derivative lacking N6-dimethylation of the two adjacent adenosines in a hairpin loop. The fragment from the ksgA strain still contains a naturally occurring N2-methylguanosine in the loop. An RNA molecule resembling the B. stearothermophilus colicin fragment but without modified nucleosides was synthesized in vitro using a DNA template and bacteriophage T7 RNA polymerase. Proton-NMR spectra of the RNAs were recorded at 500 MHz. The imino-proton resonances of base-paired G and U residues could be assigned on the basis of previous NMR studies of the colicin fragment of Escherichia coli and by a combination of methylation-induced shifts and thermal melting of base pairs. The assignments were partly confirmed by NOE measurements. Adenosine dimethylation in the loop has a distinct conformational effect on the base pairs adjoining the loop. The thermal denaturation melting curve of the enzymatically synthesized RNA fragment was also determined and the transition midpoint (tm) was found to be 73 degrees C at 15 mM Na+. A comparison with previously determined thermodynamic parameters for various colicin fragments demonstrates that base methylations in the loop lead to a relatively strong destabilization of the hairpin helix. In terms of free energy the positive contribution of the methylations are in the order of the deletion of one base pair from the stem. Other data show that recently published free-energy parameters do not apply for certain RNA hairpins.  相似文献   

19.
R Klinck  T Sprules    K Gehring 《Nucleic acids research》1997,25(11):2129-2137
Structural characteristics of three RNA hairpins from the internal ribosome entry site of poliovirus mRNAs have been determined in solution by NMR. Complete proton, phosphorus and carbon resonance assignments were made for the three 16 nt hairpins. The loop sequences, 5'-AAUCCA , AAACCA and GAACCA, have been shown to be essential for viral mRNA translation. NOESY spectra for the three oligomers were very similar indicating a common three dimensional structure. Stems were A-type duplexes with C3'-endo sugar pucker. In the loops, sequential base stacking interactions were detected for all bases except between U8/A8 and C9, indicating a turn in the phosphodiester backbone at this point. Only one nucleotide, U8/A8, had a sugar pucker which deviated appreciably from C3'-endo. The final base in the loop, A11, exhibited an unusual gauche (-) gamma angle. An ensemble of 10 structures calculated for one hairpin using restrained molecular dynamics shows that the first three bases of the loop are turned so as to be exposed to the exterior of the molecule, while the remaining three bases are in an orientation approximating a continuation of the stem helix. Structure calculations and NMR relaxation measurements indicate that the loop apex is subject to considerable local dynamics.  相似文献   

20.
Oligodeoxynucleotides are reversibly deuteriated at the purine C8 and cytosine C5 positions with deuterioammonium bisulfite at pD 7.8. The exchange reaction is complete after 48 h at 65 degrees C. When an oligomer deuteriated under these conditions is analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy, the purine H8 and cytosine H5 proton signals are selectively removed from the spectrum. A non-self-complementary oligodeoxynucleotide that has been deuteriated in this manner may be annealed with its complement and the resulting heteroduplex analyzed by two-dimensional nuclear Overhauser enhancement (NOESY) spectroscopy. NOE cross-peaks arising from pyrimidine H6-deoxyribose H1' dipolar interactions in both strands are observed, but purine H8-deoxyribose H1' and purine H8-deoxyribose H2',H2" dipolar interactions are only observed for the nondeuteriated strand. The intense cytosine H5-H6 cross-peaks are also removed from the spectrum of the deuteriated strand, which further simplifies interpretation since these strong cross-peaks often interfere with less intense NOE cross-peaks arising from dipolar coupling between purine H8 or pyrimidine H6 and deoxyribose anomeric protons. The resulting spectral simplification allows unambiguous assignments to be made on NOEs that otherwise may be difficult to distinguish. The deuteration procedure is demonstrated with the sequence d(CGTTATAATGCG).d(CGCATTATAACG), which has previously been assigned by traditional NOESY methods [Wemmer, D. E., Chou, S.-H., Hare, D. R., & Reid, B. R. (1984) Biochemistry 23, 2262-2268]. Although the assignment of this dodecadeoxynucleotide may be completed without deuteriation, several NOEs must be assigned indirectly because of degeneracies in the chemical shift of the purine H8 protons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号