首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During Drosophila melanogaster oogenesis Gurken, a TGF-alpha like protein localized close to the oocyte nucleus, activates the MAPK cascade via the Drosophila EGF receptor (DER). Activation of this pathway induces different cell fates in the overlying follicular epithelium, specifying the two dorsolaterally positioned respiratory appendages and the dorsalmost cells separating them. Signal-associated internalization of Gurken protein into follicle cells demonstrates that the Gurken signal is spatially restricted and of constant intensity during mid-oogenesis. At the same time MAPK activation evolves in a spatially and temporally dynamic way and resolves into a complex pattern that presages the position of the appendages. Therefore, different dorsal follicle cell fates are not determined by a Gurken morphogen gradient. Instead they are specified by secondary signal amplification and refinement processes that integrate the Gurken signal with positive and negative feedback mechanisms generated by target genes of the DER pathway.  相似文献   

2.
Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR system shows that the shape of the Gurken gradient is controlled by a single dimensionless parameter, the Thiele modulus, which reflects the relative importance of ligand diffusion and degradation. By combining the model with genetic alterations of EGFR levels, we have estimated the value of the Thiele modulus in the wild-type egg chamber. This provides a direct characterization of the shape of the Gurken gradient and demonstrates how parameter estimation techniques can be used to quantify morphogen gradients in development.  相似文献   

3.
The genes okra and spindle-B act during meiosis in Drosophila to repair double-stranded DNA breaks (DSBs) associated with meiotic recombination. Unexpectedly, mutations in these genes cause dorsoventral patterning defects during oogenesis. These defects result from a failure to accumulate Gurken protein, which is required to initiate dorsoventral patterning during oogenesis. Here we find that the block in Gurken accumulation in the oocyte cytoplasm reflects activation of a meiotic checkpoint in response to the persistence of DSBs in the nucleus. We also show that Vasa is a target of this meiotic checkpoint, and so may mediate the checkpoint-dependent translational regulation of Gurken.  相似文献   

4.
The Drosophila epidermal growth factor receptor (EGFR) is active in different tissues and is involved in diverse processes such as patterning of the embryonic ectoderm, growth and differentiation of imaginal discs and cell survival. During oogenesis, the EGFR is expressed in the somatic follicle cells that surround individual oocyte-nurse cell complexes. In response to germline signals, the follicle cells differentiate in a complex pattern, which in turn leads to the establishment of the egg axes. Two recent reports have shown that the strategies used to pattern posterior follicle cells are different from those used to pattern dorsal follicle cells. In posterior follicle cells, EGFR activity is translated into an on-off response, whereas, in dorsal follicle cells, patterning mechanisms are initiated and refined by feedback that modulates receptor activity over time.  相似文献   

5.
Spatial patterns of cell differentiation in developing tissues can be controlled by receptor tyrosine kinase (RTK) signaling gradients, which may form when locally secreted ligands activate uniformly expressed receptors. Graded activation of RTKs can span multiple cell diameters, giving rise to spatiotemporal patterns of signaling through the Extracellular Signal Regulated/Mitogen Activated Protein Kinase (ERK/MAPK), which connects receptor activation to multiple aspects of tissue morphogenesis. This general mechanism has been identified in numerous developmental contexts, from body axis specification in insects to patterning of the mammalian neocortex. We review recent quantitative studies of this mechanism in Drosophila oogenesis, an established genetic model of signaling through the Epidermal Growth Factor Receptor (EGFR), a highly conserved RTK.  相似文献   

6.
J R Lee  S Urban  C F Garvey  M Freeman 《Cell》2001,107(2):161-171
The membrane proteins Star and Rhomboid-1 have been genetically defined as the primary regulators of EGF receptor activation in Drosophila, but their molecular mechanisms have been elusive. Both Star and Rhomboid-1 have been assumed to work at the cell surface to control ligand activation. Here, we demonstrate that they control receptor signaling by regulating intracellular trafficking and proteolysis of the ligand Spitz. Star is present throughout the secretory pathway and is required to export Spitz from the endoplasmic reticulum to the Golgi apparatus. Rhomboid-1 is localized in the Golgi, where it promotes the cleavage of Spitz. This defines a novel growth factor release mechanism that is distinct from metalloprotease-dependent shedding from the cell surface.  相似文献   

7.
BACKGROUND: During Drosophila oogenesis, unrepaired double-strand DNA breaks activate a mei-41-dependent meiotic checkpoint, which couples the progression through meiosis to specific developmental processes. This checkpoint affects the accumulation of Gurken protein, a transforming growth factor alpha-like signaling molecule, as well as the morphology of the oocyte nucleus. However, the components of this checkpoint in flies have not been completely elucidated. RESULTS: We show that a mutation in the Drosophila Chk2 homolog (DmChk2/Mnk) suppresses the defects in the translation of gurken mRNA and also the defects in oocyte nuclear morphology. We also found that DmChk2 is phosphorylated in a mei-41-dependent pathway. Analysis of the meiotic cell cycle progression shows that the Drosophila Chk2 homolog is not required during early meiotic prophase, as has been observed for Chk2 in C. elegans. We demonstrate that the activation of the meiotic checkpoint affects Dwee1 localization and is associated with DmChk2-dependent posttranslational modification of Dwee1. We suggest that Dwee1 has a role in the meiotic checkpoint that regulates the meiotic cell cycle, but not the translation of gurken mRNA. In addition, we found that p53 and mus304, the Drosophila ATR-IP homolog, are not required for the patterning defects caused by the meiotic DNA repair mutations. CONCLUSIONS: DmChk2 is a transducer of the meiotic checkpoint in flies that is activated by unrepaired double-strand DNA breaks. Activation of DmChk2 in this specific checkpoint affects a cell cycle regulator as well as mRNA translation.  相似文献   

8.
Recent advances shed light on the cellular processes that cooperate during oogenesis to produce a fully patterned egg, containing all the maternal information required for embryonic development. Progress has been made in defining the early steps in oocyte specification and it has been shown that progression of oogenesis is controlled by a meiotic checkpoint and requires active maintenance of the oocyte cell fate. The function of Gurken signalling in patterning the dorsal-ventral axis later in oogenesis is better understood. Anterior-posterior patterning of the embryo requires activities of bicoid and oskar mRNAs, localised within the oocyte. A microtubule motor, Kinesin, is directly implicated in localisation of oskar mRNA to the posterior pole of the oocyte.  相似文献   

9.
10.
11.
The function of the broad-complex during Drosophila melanogaster oogenesis.   总被引:1,自引:0,他引:1  
G Tzolovsky  W M Deng  T Schlitt  M Bownes 《Genetics》1999,153(3):1371-1383
  相似文献   

12.
Control of EGF receptor activation in Drosophila   总被引:1,自引:0,他引:1  
  相似文献   

13.
Autocrine signaling through the Epidermal Growth Factor Receptor (EGFR) operates at various stages of development across species. A recent hypothesis suggested that a distributed network of EGFR autocrine loops was capable of spatially modulating a simple single-peaked input into a more complex two-peaked signaling pattern, specifying the formation of a pair organ in Drosophila oogenesis (two respiratory appendages on the eggshell). To test this hypothesis, we have integrated genetic and biochemical information about the EGFR network into a mechanistic model of transport and signaling. The model allows us to estimate the relative spatial ranges and time scales of the relevant feedback loops, to interpret the phenotypic transitions in eggshell morphology and to predict the effects of new genetic manipulations. We have found that the proposed mechanism with a single diffusing inhibitor is sufficient to convert a single-peaked extracellular input into a two-peaked pattern of intracellular signaling. Based on extensive computational analysis, we predict that the same mechanism is capable of generating more complex patterns. At least indirectly, this can be used to account for more complex eggshell morphologies observed in related fly species. We propose that versatility in signaling mediated by autocrine loops can be systematically explored using experiment-based mechanistic models and their analysis.  相似文献   

14.
We have examined cytoskeletal requirements for bicoid (bcd) RNA localization during Drosophila oogenesis. bcd is an anterior morphogen whose proper function relies on the localization of its messenger RNA to the anterior cortex of the egg. Drugs that depolymerize microtubules perturb all aspects of bcd RNA localization. During recovery from drug treatment, bcd RNA relocalizes to the oocyte cortex, suggesting that the localization machinery is a component of the cortical cytoskeleton. Taxol, a drug that stabilizes microtubules, also effectively disrupts bcd RNA localization, and the effects of taxol treatments on exuperantia and swallow mutants suggest general roles for these gene products in the multi-step bcd RNA localization process.  相似文献   

15.
Cell death is a prominent feature of animal germline development. In Drosophila, the death of 15 nurse cells is linked to the development of each oocyte. In addition, females respond to poor environmental conditions by inducing egg chamber death prior to yolk uptake by the oocyte. To study these two forms of cell death, we analyzed caspase activity in the germline by expressing a transgene encoding a caspase cleavage site flanked by cyan fluorescent protein and yellow fluorescent protein. When expressed in ovaries undergoing starvation-induced apoptosis, this construct was an accurate reporter of caspase activity. However, dying nurse cells at the end of normal oogenesis showed no evidence of cytoplasmic caspase activity. Furthermore, although expression of the caspase inhibitors p35 or Drosophila inhibitor of apoptosis protein 1 blocked starvation-induced death, it did not affect normal nurse cell death or overall oogenesis in well-fed females. Our data suggest that caspases play no role in developmentally programmed nurse cell death.  相似文献   

16.
17.
Patterning of the Drosophila egg requires the establishment of several distinct types of somatic follicle cells, as well as interactions between these follicle cells and the oocyte. The polar cells occupy the termini of the follicle and are specified by the activation of Notch. We have investigated their role in follicle patterning by creating clones of cells mutant for the Notch modulator fringe. This genetic ablation of polar cells results in cell fate defects within surrounding follicle cells. At the anterior, the border cells, the immediately adjacent follicle cell fate, are absent, as are the more distant stretched and centripetal follicle cells. Conversely, increasing the number of polar cells by expressing an activated form of the Notch receptor increases the number of border cells. At the posterior, elimination of polar cells results in abnormal oocyte localization. Moreover, when polar cells are mislocalized laterally, the surrounding follicle cells adopt a posterior fate, the oocyte is located adjacent to them, and the anteroposterior axis of the oocyte is re-oriented with respect to the ectopic polar cells. Our observations demonstrate that the polar cells act as an organizer that patterns surrounding follicle cells and establishes the anteroposterior axis of the oocyte. The origin of asymmetry during Drosophila development can thus be traced back to the specification of the polar cells during early oogenesis.  相似文献   

18.
Recent work on Drosophila oogenesis has begun to reveal how the first asymmetries in development arise and how these relate to the later events that localise the positional cues which define the embryonic axes. The Cadherin-dependent positioning of the oocyte creates an anterior-posterior polarity that is transmitted to the embryo through the localisation and localised translation of bicoid, oskar, and nanos mRNA. In contrast, dorsal-ventral polarity arises from the random migration of the nucleus to the anterior of the oocyte, where it determines where gurken mRNA is translated and localised. Gurken signalling then defines the embryonic dorsal-ventral axis by restricting pipe expression to the ventral follicle cells, where Pipe regulates the production of an unidentified cue that activates the Toll signalling pathway.  相似文献   

19.
Cui J  Sackton KL  Horner VL  Kumar KE  Wolfner MF 《Genetics》2008,178(4):2017-2029
Egg activation is the process that modifies mature, arrested oocytes so that embryo development can proceed. One key aspect of egg activation is the cytoplasmic polyadenylation of certain maternal mRNAs to permit or enhance their translation. wispy (wisp) maternal-effect mutations in Drosophila block development during the egg-to-embryo transition. We show here that the wisp gene encodes a member of the GLD-2 family of cytoplasmic poly(A) polymerases (PAPs). The WISP protein is required for poly(A) tail elongation of bicoid, Toll, and torso mRNAs upon egg activation. In Drosophila, WISP and Smaug (SMG) have previously been reported to be required to trigger the destabilization of maternal mRNAs during egg activation. SMG is the major regulator of this activity. We report here that SMG is still translated in activated eggs from wisp mutant mothers, indicating that WISP does not regulate mRNA stability by controlling the translation of smg mRNA. We have also analyzed in detail the very early developmental arrest associated with wisp mutations. Pronuclear migration does not occur in activated eggs laid by wisp mutant females. Finally, we find that WISP function is also needed during oogenesis to regulate the poly(A) tail length of dmos during oocyte maturation and to maintain a high level of active (phospho-) mitogen-activated protein kinases (MAPKs).  相似文献   

20.
In many insects, development of the oocyte arrests temporarily just before vitellogenesis, the period when vitellogenins (yolk proteins) accumulate in the oocyte. Following hormonal and environmental cues, development of the oocyte resumes, and endocytosis of vitellogenins begins. An essential component of yolk uptake is the vitellogenin receptor. In this report, we describe the ovarian expression pattern and subcellular localization of the mRNA and protein encoded by the Drosophila melanogaster vitellogenin receptor gene yolkless (yl). yl RNA and protein are both expressed very early during the development of the oocyte, long before vitellogenesis begins. RNA in situ hybridization and lacZ reporter analyses show that yl RNA is synthesized by the germ line nurse cells and then transported to the oocyte. Yl protein is evenly distributed throughout the oocyte during the previtellogenic stages of oogenesis, demonstrating that the failure to take up yolk in these early stage oocyte is not due to the absence of the receptor. The transition to the vitellogenic stages is marked by the accumulation of yolk via clathrin-coated vesicles. After this transition, yolk protein receptor levels increase markedly at the cortex of the egg. Consistent with its role in yolk uptake, immunogold labeling of the receptor reveals Yl in endocytic structures at the cortex of wild-type vitellogenic oocytes. In addition, shortly after the inception of yolk uptake, we find multivesicular bodies where the yolk and receptor are distinctly partitioned. By the end of vitellogenesis, the receptor localizes predominantly to the cortex of the oocyte. However, during oogenesis in yl mutants that express full-length protein yet fail to incorporate yolk proteins, the receptor remains evenly distributed throughout the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号