首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lethal mutagenesis is a promising new antiviral therapy that kills a virus by raising its mutation rate. One potential shortcoming of lethal mutagenesis is that viruses may resist the treatment by evolving genomes with increased robustness to mutations. Here, we investigate to what extent mutational robustness can inhibit extinction by lethal mutagenesis in viruses, using both simple toy models and more biophysically realistic models based on RNA secondary-structure folding. We show that although the evolution of greater robustness may be promoted by increasing the mutation rate of a viral population, such evolution is unlikely to greatly increase the mutation rate required for certain extinction. Using an analytic multi-type branching process model, we investigate whether the evolution of robustness can be relevant on the time scales on which extinction takes place. We find that the evolution of robustness matters only when initial viral population sizes are small and deleterious mutation rates are only slightly above the level at which extinction can occur. The stochastic calculations are in good agreement with simulations of self-replicating RNA sequences that have to fold into a specific secondary structure to reproduce. We conclude that the evolution of mutational robustness is in most cases unlikely to prevent the extinction of viruses by lethal mutagenesis.  相似文献   

2.
Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage φ6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.  相似文献   

3.
It is generally accepted that mutation rates of RNA viruses are inherently high due to the lack of proofreading mechanisms. However, direct estimates of mutation rate are surprisingly scarce, in particular for plant viruses. Here, based on the analysis of in vivo mutation frequencies in tobacco etch virus, we calculate an upper-bound mutation rate estimation of 3×10−5 per site and per round of replication; a value which turns out to be undistinguishable from the methodological error. Nonetheless, the value is barely on the lower side of the range accepted for RNA viruses, although in good agreement with the only direct estimate obtained for other plant viruses. These observations suggest that, perhaps, differences in the selective pressures operating during plant virus evolution may have driven their mutation rates towards values lower than those characteristic of other RNA viruses infecting bacteria or animals.  相似文献   

4.

Background

Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ~10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered.

Results

We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year.

Conclusion

These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules.  相似文献   

5.
6.
Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has significant potential in aiding population management to prevent local (and global) extinction events.  相似文献   

7.
Viral evolution and the emergence of SARS coronavirus   总被引:8,自引:0,他引:8  
The recent appearance of severe acute respiratory syndrome coronavirus (SARS-CoV) highlights the continual threat to human health posed by emerging viruses. However, the central processes in the evolution of emerging viruses are unclear, particularly the selection pressures faced by viruses in new host species. We outline some of the key evolutionary genetic aspects of viral emergence. We emphasize that, although the high mutation rates of RNA viruses provide them with great adaptability and explain why they are the main cause of emerging diseases, their limited genome size means that they are also subject to major evolutionary constraints. Understanding the mechanistic basis of these constraints, particularly the roles played by epistasis and pleiotropy, is likely to be central in explaining why some RNA viruses are more able than others to cross species boundaries. Viral genetic factors have also been implicated in the emergence of SARS-CoV, with the suggestion that this virus is a recombinant between mammalian and avian coronaviruses. We show, however, that the phylogenetic patterns cited as evidence for recombination are more probably caused by a variation in substitution rate among lineages and that recombination is unlikely to explain the appearance of SARS in humans.  相似文献   

8.
Undoubtedly, viruses represent a major threat faced by human and veterinary medicines and by agronomy. The rapid evolution of viruses enables them to escape from natural immunities and from state-of-the-art antiviral treatments, with new viruses periodically emerging with deadly consequences. Viruses have also become powerful and are increasingly used tools in the field of experimental evolution. A growing body of evidence points that the evolution of viruses is mainly determined by key features such as their compacted genomes, enormous population sizes, and short generation times. In addition, RNA viruses also present large selection coefficients, antagonistic epistasis, and high mutation rates. Most of this knowledge comes from studies that have used either bacteriophages or animal viruses in cell cultures as experimental systems. However, plant viruses provide almost identical advantages for evolutionary studies and, in addition, offer an invaluable tool for studying the interplay between viruses and pluricellular hosts. Without seeking to be exhaustive, here we summarize some peculiarities of plant viruses and review recent experiments that have explored important questions on evolution, such as the role of deleterious mutation and neutrality, the effect of different transmission modes in the evolution of virulence, and the heterogeneous selective constraints imposed by multiple hosts.  相似文献   

9.
Based on their extremely high mutation rates, RNA viruses have been traditionally considered as the fastest evolving entities in nature. However, recent work has revealed that, despite their greater replication fidelity, single-stranded (ss) DNA viruses can evolve fast in a similar way. To further investigate this issue, we have compared the rates of adaptation and molecular evolution of ssRNA and ssDNA viruses under highly controlled laboratory conditions using the bacteriophages ΦX174, G4, f1, Qβ, SP, and MS2 as model systems. Our results indicate that ssRNA phages evolve faster than ssDNA phages under strong selective pressure, and that their extremely high mutation rates appear to be optimal for this kind of scenario. However, their performance becomes similar to that of ssDNA phages over the longer term or when the population is moderately well-adapted. Interestingly, the roughly 100-fold difference between the mutation rates of ssRNA and ssDNA phages yields less than a fivefold difference in adaptation and nucleotide substitution rates. The results are therefore consistent with the observation that, despite their lower mutation rates, ssDNA viruses can sometimes match the evolvability of RNA viruses.  相似文献   

10.
11.
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.  相似文献   

12.
High mutation rates, bottlenecks, and robustness of RNA viral quasispecies   总被引:1,自引:0,他引:1  
Manrubia SC  Escarmís C  Domingo E  Lázaro E 《Gene》2005,347(2):273-282
Population bottlenecks are stochastic events that strongly condition the structure and evolution of natural populations. Their effects are readily observable in highly heterogeneous populations, such as RNA viruses, since bottlenecks cause a fast accumulation of mutations. Considering that most mutations are deleterious, it was predicted that the frequent application of bottlenecks would yield a population unable to replicate. However, in vitro as well as in vivo systems evolving through bottlenecks present a remarkable resistance to extinction. This observation reveals the robustness of RNA viruses and points to the existence of internal mechanisms which must confer a high degree of adaptability to fast mutating populations. In this contribution, we review experimental observations regarding the survival of RNA viruses, both in laboratory experiments and in natural populations. By means of a simple theoretical model of evolution which incorporates strong reductions of the population size, we explore the relationship between the number of replication rounds that a single founder particle undergoes before the next bottleneck is applied, and the mutation rate in a particular environment. Our numerical results reveal that the mutation rate has evolved in a concerted way with the degree of optimization achieved by the population originated from the founder particle. We hypothesize that this mechanism generates a mutation-selection equilibrium in natural populations that maximizes adaptability while maintaining their structure.  相似文献   

13.
Most models of quasi-species evolution predict that populations will evolve to occupy areas of sequence space with the greatest concentration of neutral sequences, thus minimizing the deleterious mutation rate and creating mutationally 'robust' genomes. In contrast, empirical studies of the principal model of quasi-species evolution, RNA viruses, suggest that the effects of deleterious mutations are more severe than in similar DNA-based microbes. We demonstrate that populations divided into discrete patches connected by dispersal may favour genotypes where the deleterious effect of non-neutral mutations is maximized. This effect is especially strong in the absence of back mutation and when the amount of time spent in hosts prior to dispersal is intermediate. Our results indicate that RNA viruses that produce acute infections initiated by a small number of virions are expected to evolve fragile genetic architectures when compared with other RNA viruses.  相似文献   

14.
Error thresholds and the constraints to RNA virus evolution   总被引:7,自引:0,他引:7  
RNA viruses are often thought of as possessing almost limitless adaptability as a result of their extreme mutation rates. However, high mutation rates also put a cap on the size of the viral genome by establishing an error threshold, beyond which lethal numbers of deleterious mutations accumulate. Herein, I argue that a lack of genomic space means that RNA viruses will be subject to important evolutionary constraints because specific sequences are required to encode multiple and often conflicting functions. Empirical evidence for these constraints, and how they limit viral adaptability, is now beginning to accumulate. Documenting the constraints to RNA virus evolution has important implications for predicting the emergence of new viruses and for improving therapeutic procedures.  相似文献   

15.
Abstract.— RNA viruses show the highest mutation rate in nautre. It has been extensively demonstrated that, in the absence of purifying selection, RNA viruses accumulate deleterious mutations at a high rate. However, the parameters describing this accumulation are, in general, poorly understood. The present study reports evidences for fitness declines by the accumulation of deleterious mutations in the bacteriophage MS2. We estimated the rate of fitness decline to be as high as 16% per bottleneck transfer. In addition, our results agree with an additive model of fitness effects.  相似文献   

16.
It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs.  相似文献   

17.
Bull JJ  Wilke CO 《Genetics》2008,180(2):1061-1070
Lethal mutagenesis, the killing of a microbial pathogen with a chemical mutagen, is a potential broad-spectrum antiviral treatment. It operates by raising the genomic mutation rate to the point that the deleterious load causes the population to decline. Its use has been limited to RNA viruses because of their high intrinsic mutation rates. Microbes with DNA genomes, which include many viruses and bacteria, have not been considered for this type of treatment because their low intrinsic mutation rates seem difficult to elevate enough to cause extinction. Surprisingly, models of lethal mutagenesis indicate that bacteria may be candidates for lethal mutagenesis. In contrast to viruses, bacteria reproduce by binary fission, and this property ensures their extinction if subjected to a mutation rate >0.69 deleterious mutations per generation. The extinction threshold is further lowered when bacteria die from environmental causes, such as washout or host clearance. In practice, mutagenesis can require many generations before extinction is achieved, allowing the bacterial population to grow to large absolute numbers before the load of deleterious mutations causes the decline. Therefore, if effective treatment requires rapid population decline, mutation rates 0.69 may be necessary to achieve treatment success. Implications for the treatment of bacteria with mutagens, for the evolution of mutator strains in bacterial populations, and also for the evolution of mutation rate in cancer are discussed.  相似文献   

18.
Epistasis and its relationship to canalization in the RNA virus phi 6   总被引:5,自引:0,他引:5  
Burch CL  Chao L 《Genetics》2004,167(2):559-567
Although deleterious mutations are believed to play a critical role in evolution, assessing their realized effect has been difficult. A key parameter governing the effect of deleterious mutations is the nature of epistasis, the interaction between the mutations. RNA viruses should provide one of the best systems for investigating the nature of epistasis because the high mutation rate allows a thorough investigation of mutational effects and interactions. Nonetheless, previous investigations of RNA viruses by S. Crotty and co-workers and by S. F. Elena have been unable to detect a significant effect of epistasis. Here we provide evidence that positive epistasis is characteristic of deleterious mutations in the RNA bacteriophage phi 6. We estimated the effects of deleterious mutations by performing mutation-accumulation experiments on five viral genotypes of decreasing fitness. We inferred positive epistasis because viral genotypes with low fitness were found to be less sensitive to deleterious mutations. We further examined environmental sensitivity in these genotypes and found that low-fitness genotypes were also less sensitive to environmental perturbations. Our results suggest that even random mutations impact the degree of canalization, the buffering of a phenotype against genetic and environmental perturbations. In addition, our results suggest that genetic and environmental canalization have the same developmental basis and finally that an understanding of the nature of epistasis may first require an understanding of the nature of canalization.  相似文献   

19.
Population genetic models have shown that if genetic drift is strong and the rate of deleterious mutations is high, Muller's ratchet provides an advantage to sex. A previous study tested for the possibility that Muller's ratchet could work in RNA viruses, which are known to have very high mutation rates. Muller's ratchet was found to operate when lineages of the RNA bacteriophage φ6 were subjected to intensified genetic drift. The study did not determine, however, whether sex is advantageous to these viruses. We have examined whether sex can reverse the effects of Muller's ratchet by crossing nine φ6 lineages that were subjected to the ratchet in Chao's study. To determine whether there was a net advantage to sex, we analyzed the effect of crossing three lineages to all other lineages. Crossing increased significantly the fitness of two lineages, but it did not significantly affect the fitness of the third lineage. We argue that the minimal advantage of sex to these nine lineages is small, but positive. These results provide a possible scenario for the evolution of sex in an RNA phage like φ6.  相似文献   

20.
Populations experiencing similar selection pressures can sometimes diverge in the genetic architectures underlying evolved complex traits. We used RNA virus populations of large size and high mutation rate to study the impact of historical environment on genome evolution, thus increasing our ability to detect repeatable patterns in the evolution of genetic architecture. Experimental vesicular stomatitis virus populations were evolved on HeLa cells, on MDCK cells, or on alternating hosts. Turner and Elena (2000. Cost of host radiation in an RNA virus. Genetics. 156:1465-1470.) previously showed that virus populations evolved in single-host environments achieved high fitness on their selected hosts but failed to increase in fitness relative to their ancestor on the unselected host and that alternating-host-evolved populations had high fitness on both hosts. Here we determined the complete consensus sequence for each evolved population after 95 generations to gauge whether the parallel phenotypic changes were associated with parallel genomic changes. We also analyzed the patterns of allele substitutions to discern whether differences in fitness across hosts arose through true pleiotropy or the presence of not only a mutation that is beneficial in both hosts but also 1 or more mutations at other loci that are costly in the unselected environment (mutation accumulation [MA]). We found that ecological history may influence to what extent pleiotropy and MA contribute to fitness asymmetries across environments. We discuss the degree to which current genetic architecture is expected to constrain future evolution of complex traits, such as host use by RNA viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号