首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《FEBS letters》1987,213(2):411-414
A glucosyltransferase catalysing formation of bile acid glucosides was recently isolated from human liver microsomes. In order to investigate the potential occurrence of such bile acid derivatives in vivo, a method was devised for their isolation and purification from urine. Conditions were established with the aid of glucosides of radiolabelled, unconjugated glycine and taurine conjugated bile acids prepared enzymatically using human liver microsomes. Analysis by gas chromatography and mass spectrometry of methyl ester trimethylsilyl ether derivatives indicated the excretion of glucosides of nonamidated hyodeoxycholic, chenodeoxycholic, deoxycholic, ursodeoxycholic and cholic acids and of glycine and taurine conjugated chenodeoxycholic and cholic acids. Additional compounds were present giving mass spectral fragmentation patterns typical ofdi- and trihydroxy bile acid glycosides. Semiquantitative estimates indicated a total daily excretion of about 1 μmol.  相似文献   

2.
We developed a highly sensitive and quantitative method to detect bile acid 3-sulfates in human urine employing liquid chromatography/electrospray ionization-tandem mass spectrometry. This method allows simultaneous analysis of bile acid 3-sulfates, including nonamidated, glycine-, and taurine-conjugated bile acids, cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and lithocholic acid (LCA), using selected reaction monitoring (SRM) analysis. The method was applied to analyze bile acid 3-sulfates in human urine from healthy volunteers. The results indicated an unknown compound with the nonamidated common bile acid 3-sulfates on the chromatogram obtained by the selected reaction monitoring analysis. By comparison of the retention behavior and MS/MS spectrum of the unknown peak with the authentic specimen, the unknown compound was identified as 3beta,12alpha-dihydroxy-5beta-cholanoic acid 3-sulfate.  相似文献   

3.
A simple method for the gas-liquid chromatographic quantitation of human fecal bile acids and sterols is described where bile acids are subjected to n-butyl ester derivatization, without prior isolation from the stool, followed by trimethylsilylation of the sterols and bile acids. Under these conditions, bile acid derivatives are well resolved from each other and from the trimethylsilyl ether derivatives of fecal sterols and no overlap occurs. The method was shown to be highly reproducible and recoveries were similar to those obtained with other methods used for fecal bile acid analysis. Application of the method for bile acid and sterol analysis in human stool is described.  相似文献   

4.
Killing of Giardia lamblia trophozoites by nonimmune human milk in vitro is dependent upon the presence of cholate which activates the milk bile salt-stimulated lipase to cleave fatty acids from milk triglycerides. In the present studies, conjugated bile salts, which predominate in vivo, displayed striking differences from unconjugated bile salts in ability to support killing by milk. Human milk killed greater than 99% of the parasites in the presence of cholate, but not glycocholate or taurocholate. In contrast, after brief sonication which disrupts milk fat globules, milk killed G. lamblia after addition of either conjugated or unconjugated bile salts. Whereas cholate stimulated milk lipase to cleave triglycerides of either unsonicated or sonicated human milk, glycocholate or taurocholate stimulated lipolysis only in sonicated milk. Since the concentration of bile salts in the small intestine fluctuates, the effect of this variable on killing was examined. Each bile salt at and above its critical micellar concentration increased Giardia survival of human milk probably because it sequestered released fatty acids in micelles. This partial protection could be overcome by increasing the milk concentration. Human hepatic and gall bladder bile and artificial bile also activated human milk to kill at low concentrations but partly protected the parasite at higher concentrations. These studies show that conjugated bile salts can activate the bile salt-stimulated lipase of sonicated human milk to release fatty acids; and kill G. lamblia. Conversely, bile salts in concentrations above their critical micellar concentration sequester fatty acids and interfere with killing. Thus, nonimmune host secretions such as milk and bile may affect the course of infection by G. lamblia.  相似文献   

5.
The multidrug resistance proteins MRP2 (ABCC2) and MRP3 (ABCC3) are key primary active transporters involved in anionic conjugate and drug extrusion from the human liver. The major physiological role of MRP2 is to transport conjugated metabolites into the bile canaliculus, whereas MRP3 is localized in the basolateral membrane of the hepatocytes and transports similar metabolites back to the bloodstream. Both proteins were shown to interact with a large variety of transported substrates, and earlier studies suggested that MRPs may work as co-transporters for different molecules. In the present study we expressed the human MRP2 and MRP3 proteins in insect cells and examined their transport and ATPase characteristics in isolated, inside-out membrane vesicles. We found that the primary active transport of estradiol-17-beta-d-glucuronide (E217betaG), a major product of human steroid metabolism, was differently modulated by bile acids and organic anions in the case of human MRP2 and MRP3. Active E217betaG transport by MRP2 was significantly stimulated by the organic anions indomethacin, furosemide, and probenecid and by several conjugated bile acids. In contrast, all of these agents inhibited E217betaG transport by MRP3. We found that in the case of MRP2, ATP-dependent vesicular bile acid transport was increased by E217betaG, and the results indicated an allosteric cross-stimulation, probably a co-transport of bile acids and glucuronate conjugates through this protein. There was no such stimulation of bile acid transport by MRP3. In conclusion, the different transport modulation of MRPs by bile acids and anionic drugs could play a major role in regulating physiological and pathological metabolite fluxes in the human liver.  相似文献   

6.
Previous work from this laboratory has reported the biotransformation of bile acids (BA) into the thioester-linked glutathione (GSH) conjugates via the intermediary metabolites formed by BA:CoA ligase and shown that such GSH conjugates are excreted into the bile in healthy rats as well as rats dosed with lithocholic acid or ursodeoxycholic acid. To examine whether such novel BA-GSH conjugates are present in human bile, we determined the concentration of the GSH conjugates of the five BA that predominate in human bile. Bile was obtained from three infants (age 4, 10, and 13 months) and the BA-GSH conjugates quantified by means of liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS) in negative-ion scan mode, monitoring characteristic transitions of the analytes. By LC/ESI-MS, only primary BA were present in biliary BA, indicating that the dehydroxylating flora had not yet developed. GSH conjugates of chenodeoxycholic and lithocholic acid were present in concentrations ranging from 27 to 1120 pmol/ml, several orders of magnitude less than those of natural BA N-acylamidates. GSH conjugates were not present, however, in the ductal bile obtained from 10 adults (nine choledocholithiasis, one bile duct cancer). Our results indicate that BA-GSH conjugates are formed and excreted in human bile, at least in infants, although this novel mode of conjugation is a very minor pathway.  相似文献   

7.
To obtain information on the concentration and spectrum of bile acids in human cecal content, samples were obtained from 19 persons who had died an unnatural death from causes such as trauma, homicide, suicide, or drug overdose. Bile acid concentration was measured via an enzymatic assay for 3alpha-hydroxy bile acids; bile acid classes were determined by electrospray ionization mass spectrometry and individual bile acids by gas chromatography mass spectrometry and liquid chromatography mass spectrometry. The 3alpha-hydroxy bile acid concentration (mumol bile acid/ml cecal content) was 0.4 +/- 0.2 mM (mean +/- SD); the total 3-hydroxy bile acid concentration was 0.6 +/- 0.3 mM. The aqueous concentration of bile acids (supernatant after centrifugation) was identical, indicating that most bile acids were in solution. By liquid chromatography mass spectrometry, bile acids were mostly in unconjugated form (90 +/- 9%, mean +/- SD); sulfated, nonamidated bile acids were 7 +/- 5%, and nonsulfated amidated bile acids (glycine or taurine conjugates) were 3 +/- 7%. By gas chromatography mass spectrometry, 10 bile acids were identified: deoxycholic (34 +/- 16%), lithocholic (26 +/- 10%), and ursodeoxycholic (6 +/- 9), as well as their primary bile acid precursors cholic (6 +/- 9%) and chenodeoxycholic acid (7 +/- 8%). In addition, 3beta-hydroxy derivatives of some or all of these bile acids were present and averaged 27 +/- 18% of total bile acids, indicating that 3beta-hydroxy bile acids are normal constituents of cecal content. In the human cecum, deconjugation and dehydroxylation of bile acids are nearly complete, resulting in most bile acids being in unconjugated form at submicellar and subsecretory concentrations.  相似文献   

8.
We report a sensitive, generic method for quantitative profiling of bile acids and other endogenous metabolites in small quantities of various biological fluids and tissues. The method is based on a straightforward sample preparation, separation by reversed-phase high performance liquid-chromatography mass spectrometry (HPLC-MS) and electrospray ionisation in the negative ionisation mode (ESI-). Detection is performed in full scan using the linear ion trap Fourier transform mass spectrometer (LTQ-FTMS) generating data for many (endogenous) metabolites, not only bile acids. A validation of the method in urine, plasma and liver was performed for 17 bile acids including their taurine, sulfate and glycine conjugates. The method is linear in the 0.01-1muM range. The accuracy in human plasma ranges from 74 to 113%, in human urine 77 to 104% and in mouse liver 79 to 140%. The precision ranges from 2 to 20% for pooled samples even in studies with large number of samples (n>250). The method was successfully applied to a multi-compartmental APOE*3-Leiden mouse study, the main goal of which was to analyze the effect of increasing dietary cholesterol concentrations on hepatic cholesterol homeostasis and bile acid synthesis. Serum and liver samples from different treatment groups were profiled with the new method. Statistically significant differences between the diet groups were observed regarding total as well as individual bile acid concentrations.  相似文献   

9.
A rapid, specific, and sensitive radioassay for measuring bile acid CoA:glycine/taurine: N-acyltransferase (EC 2.3.1) has been developed. In this assay, 3H-labeled amino acids (glycine or taurine) are conjugated with unlabeled bile acid CoA derivatives to form 3H-labeled bile acid amidates. Following incubation, the 3H-labeled bile acid amidate is separated from the unreacted amino acid by an n-butanol extraction method. The extraction procedure was developed by evaluating the effects of buffer concentration and pH on the recovery of radiolabeled bile acid amidate standards in the presence of human hepatic cytosol. Highest recovery (greater than 90%) of bile acid amidate standards occurred under acidic conditions (pH 2) in the presence of 1% (w/v) SDS. When the radioassay and accompanying n-butanol extraction procedure were utilized to study the amidation of glycine or taurine with cholic acid in human hepatic cytosol, a single peak of radioactivity corresponding with either authentic glycocholate or taurocholate was detected in the n-butanol phase by high-performance liquid chromatography. This assay for bile acid CoA:glycine/taurine: N-acyltransferase activity was linear with incubation time and protein concentration. This assay should be useful in the biochemical studies of this enzyme, as well as in the examination of bile acid amidation in clinical liver specimens.  相似文献   

10.
J L Pace  T J Chai  H A Rossi    X Jiang 《Applied microbiology》1997,63(6):2372-2377
Many enteric pathogens are thought to enter a viable but nonculturable state when deprived of nutrients. Virulent strains of the enteric pathogen Vibrio parahaemolyticus are rarely isolated from their low-nutrient aquatic environments, possibly due to their nonculturability. Host factors such as bile may trigger release from dormancy and increase virulence in these strains. In this study, the addition of bile or the bile acid deoxycholic acid to estuarine water-cultured bacteria led to an increase in the direct viable count and colony counts among the virulent strains. This effect was not demonstrated in the nonvirulent strains, and it was reversed by extraction of bile acids with cholestyramine. Bile-treated V. parahaemolyticus had lower levels of intracellular calcium than untreated cells, and this effect coincided with an increase in the number of metabolically active cells. Chelation of intracellular calcium with BAPTA/AM (R. Y. Tsien, Biochemistry 19:2396-2402, 1980) produced similar results. Addition of bile to V. parahaemolyticus cultures in laboratory medium enhanced factors associated with virulence such as Congo red binding, bacterial capsule size, and adherence to epithelial cells. These results suggest that a bile acid-containing environment such as that found in the human host favors growth of virulent strains of V. parahaemolyticus and that bile acids enhance the expression of virulence factors. These effects seem to be mediated by a decrease in intracellular calcium.  相似文献   

11.
The brain is the almost exclusive site of formation of 24S-hydroxycholesterol in man, and there is a continuous flux of this oxysterol across the blood-brain barrier into the circulation. The hepatic metabolism of 24S-hydroxycholesterol was studied here by three different approaches: incubation of tritium-labeled 24S-hydroxycholesterol with human primary hepatocytes, administration of tritium-labeled 24S-hydroxycholesterol to a human volunteer, and quantitation of free and conjugated 24S-hydroxycholesterol and its neutral metabolites in ileocecal fluid from patients with ileal fistulae. 24S-Hydroxycholesterol as well as 24R-hydroxycholesterol were converted into bile acids by human hepatocytes at a rate of about 40% of that of the normal intermediate in bile acid synthesis, 7 alpha-hydroxycholesterol. There was also a conversion of 24S-hydroxycholesterol into conjugate(s) of 5-cholestene-3 beta,24S,27-triol at a rate similar to the that of conversion into bile acids. When administered to a human volunteer, labeled 24S-hydroxycholesterol was converted into bile acids at about half the rate of simultaneously administered labeled 7 alpha-hydroxycholesterol. Free, sulfated, and glucuronidated 24S-hydroxycholesterol and 5-cholestene-3 beta,24,27-triol were identified in ileocecal fluid. The excretion of these steroids was about 3.5 mg/24 h, amounting to more than 50% of the total estimated flux of 24S-hydroxycholesterol from the brain. It is concluded that 24S-hydroxycholesterol is a less efficient precursor to bile acids and that about half of it is conjugated and eliminated in bile as such or as a conjugate of a 27-hydroxylated metabolite. The less efficient metabolism of 24S-hydroxycholesterol may explain the surprisingly high levels of this oxysterol in the circulation and is of interest in relation to the suggested role of 24S-hydroxycholesterol as a regulator of cholesterol homeostasis.  相似文献   

12.
A reversed phase high pressure liquid chromatography (HPLC) system capable of simultaneously separating four lithocholyl species (sulfated and unsulfated forms of lithocholylglycine and lithocholyltaurine) as well as the eight other major conjugated bile acids present in human bile is described. The system uses a C18 octadecylsilane column and isocratic elution with methanol phosphate buffer, pH 5.35. Relative bile acid concentration is determined by absorbance at 200 nm. Retention times relative to chenodeoxycholylglycine are reported for the four lithocholic acid forms, the glycine and taurine amidate of the four major bile acids present in human bile (cholic, chenodeoxycholic, ursodeoxycholic, and deoxycholic), and for their corresponding unconjugated forms. Retention times are also reported for the glycine and taurine amidates as well as the unconjugated form of the C23 norderivatives of these bile acids. Maximal absorbance of bile acid amidates is at 200 nm and is very similar for the (unsulfated) glycine and taurine amidates. Sulfated lithocholyl amidates exhibit molar absorptivities at 200 nm which are 1.4 times greater than that of non-sulfated lithocholyl amidates. Unconjugated bile acid absorbance at 200 nm or 210 nm is 20 to 30 times less than that of corresponding peptide conjugates. The method has been applied to samples of gallbladder bile obtained from 14 healthy subjects to define the pattern of conjugated bile acids present in human bile.  相似文献   

13.
The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species.  相似文献   

14.
The intermicellar bile salt concentration in equilibrium with the bile salt-lecithin-cholesterol mixed-micelle has been studied in human bile. Equilibrium-dialysis, used to measure the biliary intermicellar bile salt concentration, has been validated as an applicable method by studying the cholate-lecithin mixed-micelle, for which intermicellar bile salt concentration values have previously been reported. The intermicellar bile salt concentration of bile was essentially independent of ionic strength in the range 0.05-0.15 M chloride. Simple dilution of bile lowered the intermicellar bile salt concentration (about 2/3 reduction for each two-fold dilution). This reduction occurred because of a simultaneous decrease in the molar ration of bile salt/phospholipid in the micelle. Dilution of micelles with micellar bile salt/phospholipid held constant did not affect the intermicellar bile salt concentration. The relationship between intermicellar bile salt concentration and micellar bile salt/phospholipid, defined in the dilution studies, was linear in the range of study. For a composite of five biles, this relationship was described by the equation: intermicellar bile salt concentration = 1.27 (bile salt/phsopholipid) + 0.538. Data obtained on an artificial bile agreed closely with the results obtained on bile suggesting that the other constituents of bile did not affect this analysis. These findings may be helpful in understanding the process of micellar cholesterol solubilization in bile.  相似文献   

15.
An improved method for separation and quantitation of sulfated neutral and acidic steroids in human feces was developed. The procedure consists of separation of sulfated steroids on Sephadex LH-20 and hydrolysis by cholylglycine hydrolase followed by quantitation and identification of the trimethylsilylether derivatives by gas-liquid chromatography and gas-liquid chromatography-mass spectroscopy. Using this procedure, we detected no sulfated bile acids in human feces. However, sulfated cholesterol was detected in the sulfated bile acid fraction obtained from human fecal extracts. Analysis showed that cholesterol sulfate comprised 12.3, 11.2, and 31.0% of the total neutral sterol fraction in the three fecal samples. Using our procedures, cholesterol sulfate and bile acid sulfates in a biological mixture can be quantitated and identified when they are present.  相似文献   

16.
Quantitative analyses of individual bile acids in biological samples are limited by the lengthy multistep preparations necessary. Using heptafluorobutyric acid anhydride in pyridine as derivatizing agent, we reduced several steps to one. Bile acids and their glycine and taurine conjugates form stable heptafluorobutyrate derivatives, climinating the need for deconjugation and preparation of methyl esters. The derivatives have been characterized by mass spectrometry, and optimum reaction yields have been determined. Operating conditions for analyzing the bile acid heptafluorobutyrates by gas-liquid chromatography on various column packings were investigated, and 0.5% QF-1 or 3% OV-255 was found suitable. The bile acid derivatives were identical whether starting with the bile acid or the glycine or taurine conjugates. The procedure was applied to a quantitative analysis of artificial mixtures of bile acids and bile conjugates, and also of human bile. The results compared favorably to those obtained with a 3 alpha- and 7 alpha-hydroxysteroid dehydrogenase fluorimetric method.  相似文献   

17.
A simple, sensitive, and specific liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) method for the determination of bile acids in human bile has been developed. The bile acids were extracted with a C(18) (octadecyl) reversed-phase column and identified and quantified by simultaneous monitoring of their parent and daughter ions, using the multiple reaction monitoring mode. Identification and quantification of conjugated bile acids in bile was achieved in 5 min. The detection limit was 1 ng, and the determination was linear for concentrations up to 100 ng. The percent recovery of standards made of single conjugated (glycine and taurine) bile acid or of mixture of glycine- or taurine-conjugated cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, and lithocholic acid averaged 71.73% to 95.92%. The percent recovery of the same standard bile acids was also determined by gas chromatography-mass spectrometry (GC-MS), using the selected ion monitoring mode, and averaged 66% to 96%. A biliary bile acid profile of human gallbladder bile was obtained by LC-MS/MS and GC-MS.The results showed a good correlation between the two techniques and no significant differences between the two methods were observed. The LC-MS/MS method was also used for the analysis of serum, urine, and fecal bile acids. In conclusion, LC-MS/MS is a simple, sensitive, and rapid technique for the analysis of conjugated bile acids in bile and other biological samples. - Perwaiz, S., B. Tuchweber, D. Mignault, T. Gilat, and I. M. Yousef. Determination of bile acids in biological fluids by liquid chromatography-electrospray tandem mass spectrometry. J. Lipid Res. 2001. 42: 114;-119.  相似文献   

18.
Cholesterol ester hydrolase (sterol-ester acylhydrolase, EC 3.1.1.13) was purified from human pancreatic tissue by column chromatography and acetone precipitation, leading to a 400-fold enrichment. Isoelectric focusing of this product reveals a double-band at pH 4.5 and 4.6. The molecular weight was estimated at 320 kDa by means of Sephadex filtration on calibrated columns. Obviously these large molecules represent a tetrameric form of the monomeric subunit (molecular mass 76-80 kDa), which is also enzymatically active. It was found together with the dimeric form in pancreatic juice, where the tetrameric enzyme is responsible for the major part of the hydrolytic activity, splitting cholesterol ester as well as synthetic substrates, such as fluorescein or p-nitrophenyl esters. Attempts to split the tetrameric cholesterol ester hydrolase, isolated from pancreatic tissue, into active subunits found additionally in pancreatic juice by the influence of bile acids and proteolytic enzymes failed. The spectral shift method using Rhodamine fluorescence was employed in order to prove that fluorescein dilaurate forms micellar solutions and mixed micelles when bile salts are present.  相似文献   

19.

Background/Aims

Hepcidin (gene name HAMP), an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections.

Methods

Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and –blotting, while prohepcidin levels in human bile were determined by ELISA.

Results

Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC) patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03). In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively). In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05).

Conclusion

Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections.  相似文献   

20.
Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin   总被引:8,自引:0,他引:8  
The cellular uptake of microcystin-LR, a cyclic heptapeptide hepatotoxin from the cyanobacterium Microcystis aeruginosa, was studied by means of a radiolabelled derivative of the toxin. 3H-dihydromicrocystin-LR. The uptake of 3H-dihydromicrocystin-LR was shown to be specific for freshly isolated rat hepatocytes whereas the uptake in the human hepatocarcinoma cell line Hep G2 as well as the mouse fibroblast cell line NIH-3T3, and the human neuroblastoma cell line SH-SY5Y, was negligible. By means of a surface barostat technique it was shown that the membrane penetrating capacity (surface activity) of microcystin-LR was low, indicating that the toxin requires an active uptake mechanism. The hepatocellular uptake of microcystin-LR could be inhibited in the presence of bile acid transport inhibitors such as antamanide (5 microM), sulfobromophthalein (50 microM) and rifampicin (30 microM). The uptake was also reduced in a concentration dependent manner when the hepatocytes were incubated in the presence the bile salts cholate and taurocholate. A complete inhibition of the hepatocellular uptake was achieved by 100 microM of either bile salt. The overall results indicate that the uptake of microcystin-LR is through the multispecific transport system for bile acids. This mechanism of cell entry would explain the previously observed cell specificity and organotropism of microcystin-LR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号