首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibody‐based microarrays is a rapidly evolving technology that has gone from the first proof‐of‐concept studies to more demanding proteome profiling applications, during the last years. Miniaturized microarrays can be printed with large number of antibodies harbouring predetermined specificities, capable of targeting high‐ as well as low‐abundant analytes in complex, nonfractionated proteomes. Consequently, the resolution of such proteome profiling efforts correlate directly to the number of antibodies included, which today is a key limiting factor. To overcome this bottleneck and to be able to perform in‐depth global proteome surveys, we propose to interface affinity proteomics with MS‐based read‐out, as outlined in this technical perspective. Briefly, we have defined a range of peptide motifs, each motif being present in 5–100 different proteins. In this manner, 100 antibodies, binding 100 different motifs commonly distributed among different proteins, would potentially target a protein cluster of 104 individual molecules, i.e. around 50% of the nonredundant human proteome. Notably, these motif‐specific antibodies would be directly applicable to any proteome in a specie independent manner and not biased towards abundant proteins or certain protein classes. The biological sample is digested, exposed to these immobilized antibodies, whereby motif‐containing peptides are specifically captured, enriched and subsequently detected and identified using MS.  相似文献   

2.
Antibody-based proteomics for human tissue profiling   总被引:4,自引:0,他引:4  
  相似文献   

3.
To broaden the range of tools available for proteomic research, we generated a library of 16,368 unique full-length human ORFs that are expressible as N-terminal GST-His(6) fusion proteins. Following expression in yeast, these proteins were then individually purified and used to construct a human proteome microarray. To demonstrate the usefulness of this reagent, we developed a streamlined strategy for the production of monospecific monoclonal antibodies that used immunization with live human cells and microarray-based analysis of antibody specificity as its central components. We showed that microarray-based analysis of antibody specificity can be performed efficiently using a two-dimensional pooling strategy. We also demonstrated that our immunization and selection strategies result in a large fraction of monospecific monoclonal antibodies that are both immunoblot and immunoprecipitation grade. Our data indicate that the pipeline provides a robust platform for the generation of monoclonal antibodies of exceptional specificity.  相似文献   

4.
There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.  相似文献   

5.
Monoclonal antibodies (mAbs) against human proteins are the primary protein capture reagents for basic research, diagnosis, and molecular therapeutics. The 2 most important attributes of mAbs used in all of these applications are their specificity and avidity. While specificity of a mAb raised against a human protein can be readily defined based on its binding profile on a human proteome microarray, it has been a challenge to determine avidity values for mAbs in a high-throughput and cost-effective fashion. To undertake this challenge, we employed the oblique-incidence reflectivity difference (OIRD) platform to characterize mAbs in a protein microarray format. We first systematically determined the Kon and Koff values of 50 mAbs measured with the OIRD method and deduced the avidity values. Second, we established a multiplexed approach that simultaneously measured avidity values of a mixture of 9 mono-specific mAbs that do not cross-react to the antigens. Third, we demonstrated that avidity values of a group of mAbs could be sequentially determined using a flow-cell device. Finally, we implemented a sequential competition assay that allowed us to bin multiple mAbs that recognize the same antigens. Our study demonstrated that OIRD offers a high-throughput and cost-effective platform for characterization of the binding kinetics of mAbs.  相似文献   

6.
《MABS-AUSTIN》2013,5(1):110-119
Monoclonal antibodies (mAbs) against human proteins are the primary protein capture reagents for basic research, diagnosis, and molecular therapeutics. The 2 most important attributes of mAbs used in all of these applications are their specificity and avidity. While specificity of a mAb raised against a human protein can be readily defined based on its binding profile on a human proteome microarray, it has been a challenge to determine avidity values for mAbs in a high-throughput and cost-effective fashion. To undertake this challenge, we employed the oblique-incidence reflectivity difference (OIRD) platform to characterize mAbs in a protein microarray format. We first systematically determined the Kon and Koff values of 50 mAbs measured with the OIRD method and deduced the avidity values. Second, we established a multiplexed approach that simultaneously measured avidity values of a mixture of 9 mono-specific mAbs that do not cross-react to the antigens. Third, we demonstrated that avidity values of a group of mAbs could be sequentially determined using a flow-cell device. Finally, we implemented a sequential competition assay that allowed us to bin multiple mAbs that recognize the same antigens. Our study demonstrated that OIRD offers a high-throughput and cost-effective platform for characterization of the binding kinetics of mAbs.  相似文献   

7.
Here we show that an affinity proteomics strategy using affinity-purified antibodies raised against recombinant human protein fragments can be used for chromosome-wide protein profiling. The approach is based on affinity reagents raised toward bioinformatics-designed protein epitope signature tags corresponding to unique regions of individual gene loci. The genes of human chromosome 21 identified by the genome efforts were investigated, and the success rates for de novo cloning, protein production, and antibody generation were 85, 76, and 56%, respectively. Using human tissue arrays, a systematic profiling of protein expression and subcellular localization was undertaken for the putative gene products. The results suggest that this affinity proteomics strategy can be used to produce a proteome atlas, describing distribution and expression of proteins in normal tissues as well as in common cancers and other forms of diseased tissues.  相似文献   

8.
Despite the wealth of commercially available antibodies to human proteins, research is often hindered by their inconsistent validation, their poor performance and the inadequate coverage of the proteome. These issues could be addressed by systematic, genome-wide efforts to generate and validate renewable protein binders. We report a multicenter study to assess the potential of hybridoma and phage-display technologies in a coordinated large-scale antibody generation and validation effort. We produced over 1,000 antibodies targeting 20 SH2 domain proteins and evaluated them for potency and specificity by enzyme-linked immunosorbent assay (ELISA), protein microarray and surface plasmon resonance (SPR). We also tested selected antibodies in immunoprecipitation, immunoblotting and immunofluorescence assays. Our results show that high-affinity, high-specificity renewable antibodies generated by different technologies can be produced quickly and efficiently. We believe that this work serves as a foundation and template for future larger-scale studies to create renewable protein binders.  相似文献   

9.
Efficient and specific removal of albumin from human serum samples   总被引:1,自引:0,他引:1  
Patient serum or plasma is frequently monitored for biochemical markers of disease or physiological status. Many of the rapidly evolving technologies of proteome analysis are being used to find additional clinically informative protein markers. The unusually high abundance of albumin in serum can interfere with the resolution and sensitivity of many proteome profiling techniques. We have used monoclonal antibodies against human serum albumin (HSA) to develop an immunoaffinity resin that is effective in the removal of both full-length HSA and many of the HSA fragments present in serum. This resin shows markedly better performance than dye-based resins in terms of both the efficiency and specificity of albumin removal. Immunoglobulins are another class of highly abundant serum protein. When protein G resin is used together with our immunoaffinity resin, Ig proteins and HSA can be removed in a single step. This strategy could be extended to the removal of any protein for which specific antibodies or affinity reagents are available.  相似文献   

10.
The development of high-performance technology platforms for generating detailed protein expression profiles, or protein atlases, is essential. Recently, we presented a novel platform that we termed global proteome survey, where we combined the best features of affinity proteomics and mass spectrometry, to probe any proteome in a species independent manner while still using a limited set of antibodies. We used so called context-independent-motif-specific antibodies, directed against short amino acid motifs. This enabled enrichment of motif-containing peptides from a digested proteome, which then were detected and identified by mass spectrometry. In this study, we have demonstrated the quantitative capability, reproducibility, sensitivity, and coverage of the global proteome survey technology by targeting stable isotope labeling with amino acids in cell culture-labeled yeast cultures cultivated in glucose or ethanol. The data showed that a wide range of motif-containing peptides (proteins) could be detected, identified, and quantified in a highly reproducible manner. On average, each of six different motif-specific antibodies was found to target about 75 different motif-containing proteins. Furthermore, peptides originating from proteins spanning in abundance from over a million down to less than 50 copies per cell, could be targeted. It is worth noting that a significant set of peptides previously not reported in the PeptideAtlas database was among the profiled targets. The quantitative data corroborated well with the corresponding data generated after conventional strong cation exchange fractionation of the same samples. Finally, several differentially expressed proteins, with both known and unknown functions, many relevant for the central carbon metabolism, could be detected in the glucose- versus ethanol-cultivated yeast. Taken together, the study demonstrated the potential of our immunoaffinity-based mass spectrometry platform for reproducible quantitative proteomics targeting classes of motif-containing peptides.  相似文献   

11.
The development of dual targeting antibodies promises therapies with improved efficacy over mono-specific antibodies. Here, we engineered a Two-in-One VEGF/angiopoietin 2 antibody with dual action Fab (DAF) as a potential therapeutic for neovascular age-related macular degeneration. Crystal structures of the VEGF/angiopoietin 2 DAF in complex with its two antigens showed highly overlapping binding sites. To achieve sufficient affinity of the DAF to block both angiogenic factors, we turned to deep mutational scanning in the complementarity determining regions (CDRs). By mutating all three CDRs of each antibody chain simultaneously, we were able not only to identify affinity improving single mutations but also mutation pairs from different CDRs that synergistically improve both binding functions. Furthermore, insights into the cooperativity between mutations allowed us to identify fold-stabilizing mutations in the CDRs. The data obtained from deep mutational scanning reveal that the majority of the 52 CDR residues are utilized differently for the two antigen binding function and permit, for the first time, the engineering of several DAF variants with sub-nanomolar affinity against two structurally unrelated antigens. The improved variants show similar blocking activity of receptor binding as the high affinity mono-specific antibodies against these two proteins, demonstrating the feasibility of generating a dual specificity binding surface with comparable properties to individual high affinity mono-specific antibodies.  相似文献   

12.
We have developed a system to identify highly specific antibody-antigen interactions by protein array screening. This removes the need for selection using animal immunisation or in vitro techniques such as phage or ribosome display. We screened an array of 27 648 human foetal brain proteins with 12 well-expressed antibody fragments that had not previously been exposed to any antigen. Four highly specific antibody-antigen pairs were identified, including three antibodies that bind proteins of unknown function. The target proteins were expressed at a very low copy number on the array, emphasising the unbiased nature of the screen. The specificity and sensitivity of binding demonstrates that this 'naive' screening approach could be applied to the high throughput isolation of specific antibodies against many different targets in the human proteome.  相似文献   

13.
To identify potential biomarkers of lung cancer (LC), profiling of proteins in sera obtained from healthy and LC patients was determined using an antibody microarray. Based on our previous study on mRNA expression profiles between patients with LC and healthy persons, 19 proteins of interest were selected as targets for fabrication of an antibody microarray. Antibody to each protein and five nonspecific control antibodies were spotted onto a hydrogel‐coated glass slide and used for profiling of proteins in sera of LC patients in a two‐color fluorescence assay. Forty‐eight human sera samples were analyzed, and expression profiling of proteins were represented by the internally normalized ratio method. Six proteins were distinctly down‐regulated in sera of LC patients; this observation was validated by Wilcoxon test, false discovery rate, and Western blotting. Blind test of other 32 human sera using the antibody microarray followed by hierarchical clustering analysis revealed an approximate sensitivity of 88%, specificity of 80%, and an accuracy of 84%, respectively, in classifying the sera, which supports the potential of the six identified proteins as biomarkers for the prognosis of lung cancer.  相似文献   

14.
蛋白质微阵列检测抗原-抗体相互作用   总被引:2,自引:0,他引:2  
为了制备蛋白质微阵列和研究芯片表面抗原-抗体的相互作用,研究了如何在玻片表面固化蛋白质和用荧光染料(Cy3,Cy5)对蛋白质进行标记.结果表明,在醛基修饰的玻璃表面,通过共价偶联的方法将抗原或抗体固定到芯片表面,能使二者保持其特异性结合能力.同时,荧光标记后的抗原或抗体仍然具有特异性结合能力.蛋白质微阵列是通过机械手在玻片表面排阵制作的.芯片上的荧光信号获取采用了激光共焦荧光扫描系统.用不同浓度的抗原探针阵列,对其相应的抗体靶分子的特异性结合进行了分析和研究.此外,还通过在玻片表面固定兔IgG和固定鼠IgG,对羊抗兔和羊抗鼠抗体与其相应抗原的特异性相互作用进行了检测.  相似文献   

15.
We have developed a system to identify highly specific antibody–antigen interactions by protein array screening. This removes the need for selection using animal immunisation or in vitro techniques such as phage or ribosome display. We screened an array of 27 648 human foetal brain proteins with 12 well-expressed antibody fragments that had not previously been exposed to any antigen. Four highly specific antibody–antigen pairs were identified, including three antibodies that bind proteins of unknown function. The target proteins were expressed at a very low copy number on the array, emphasising the unbiased nature of the screen. The specificity and sensitivity of binding demonstrates that this ‘naive’ screening approach could be applied to the high throughput isolation of specific antibodies against many different targets in the human proteome.  相似文献   

16.
Monoclonal antibodies against human follicle-stimulating hormone (hFSH) were generated by using an improved hybridoma technique with a semisolid medium in methylcellulose for initial cloning. The generated monoclonal antibodies were characterized with respect to their subunit and epitope specificity as well as cross-reactivity to other glycoprotein hormones. Monoclonal antibodies of high affinity and high specificity to hFSH were finally selected for applications in sandwich enzyme immunoassay. The monoclonal antibody specific to the alpha-subunit of FSH was coated on microtiter wells and served as the first antibody. The other high-affinity monoclonal antibody specific to beta-subunit of FSH was labeled with horseradish peroxidase and served as the second antibody. This immunoassay can be performed within 70 min at room temperature and has a minimum sensitivity of 2 mIU/ml for serum sample.  相似文献   

17.
Influenza A viruses are subtyped according to antigen characterization of hemagglutinin (HA) and neuraminidase surface glycoproteins. The hemagglutination inhibition (HI) assay using reference antiserum is currently applied to serologic screening of subtype-specific antibodies in sera. The reference antiserum is made by injecting chickens with live or inactivated whole virus preparations. Nonspecific inhibitors of antisera prepared by the conventional method may affect the specificity of HI assay. In this study, highly pure recombinant proteins generated using baculovirus expression vector system based on full-length of HA (HAF) and antigenic region of HA1 genes of H9 subtype, and also inactivated whole virus were used to immunization of chickens. Measurable antibody titers were present for treated birds after 3 weeks and generally increased after each boost. The performance of the prepared antisera was evaluated by testing a panel of known standard strains of influenza virus representing five HA subtypes. Relative to the conventional method using whole virus immunization and recombinant HAF protein, the antiserum prepared by recombinant HA1 had a specificity of 100% for all tested subtypes. The antiserum prepared by expression of HA1 protein in baculovirus has the potential for rapid and specific HA subtyping of influenza viruses without producing antibodies specific to other viral proteins.  相似文献   

18.
Improved immunofluorescent techniques have been developed for the high resolution light microscopic localization of intracellular antigens in plant tissue. Thin sections of pea cotyledon tissue which had been fixed in paraformaldehyde and embedded in glycol methacrylate were reacted with mono-specific antibodies to the storage proteins legumin and vicilin. These antibodies were raised in sheep, purified by affinity chromatography and tested by immunoelectrophoresis and immunodiffusion. Using the indirect technique, rhodamine-labeled antibodies permitted specific fluorescent localization of the legumin and vicilin to small (ca. 1 micrometer) cytoplasmic organelles in near mature tissue. Subsequent histochemical staining verified the proteinaceous nature of these organelles. Parameters affecting staining specificity and background fluorescence are discussed.  相似文献   

19.
Protein microarrays for allergen-specific antibodies detection were integrated in microfluidic chips, with imaging chemiluminescence as the analytical technique. This paper demonstrates the feasibility of miniaturized chemiluminescent ELISA by presenting rapid, reproducible and sensitive detection of protein antibodies using microfluidics. Three different proteins, beta-lactoglobulin, peanut lectin and human IgG were immobilized via a "macromolecules to polydimethylsiloxane elastomer (PDMS) transfer" protocol and used as capturing agent for the detection of specific antibodies. A convenient and reversible procedure was used to bond the PDMS microarray substrate to complimentary SU-8/glass microfluidic reaction chambers. The hydrodynamic behaviours of the three proteins interactions within the micro-chambers were investigated to select the most efficient flowing parameters (come to terms with the assay time and performances). The use of optimized conditions led to the concomitant detection of three specific antibodies at pM level in 300 microL and using 6 min sample incubation time. Finally, sera from allergic patients were assayed using the microfluidic device modified with apple hazelnut and pollen allergen. The results obtained compared favourably with those obtained with the classical Pharmacia CAP system.  相似文献   

20.
Uhlén M 《BioTechniques》2008,44(5):649-654
The use of affinity-based tools has become invaluable as a platform for basic research and in the development of drugs and diagnostics. Applications include affinity chromatography and affinity tag fusions for efficient purification of proteins as well as methods to probe the protein network interactions on a whole-proteome level. A variety of selection systems has been described for in vitro evolution of affinity reagents using combinatorial libraries, which make it possible to create high-affinity reagents to virtually all biomolecules, as exemplified by generation of therapeutic antibodies and new protein scaffold binders. The strategies for high-throughput generation of affinity reagents have also opened up the possibility of generating specific protein probes on a whole-proteome level. Recently, such affinity proteomics have allowed the detailed analysis of human protein expression in a comprehensive manner both in normal and disease tissue using tissue microarrays and confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号