首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Mouse epidermal growth factor causes a rapid increase in 2-deoxyglucose uptake in stationary phase mouse (3T3) cells or human fibroblasts. Maximum effect is approximately two fold over control levels for 3T3 cells and about 50% over controls for human fibroblasts. Maximum effect on 3T3 cells is seen about two hours after addition of 10 ng/ml EGF to the culture medium. Stimulation is easily measureable within the first fifteen minutes after addition of the hormone and may be detected at hormone concentrations as low as 0.1 ng/ml. The EGF-binding arginine esterase found associated with EGF in the mouse submaxillary gland causes an enhancement of the EGF effect. In serum-free medium, the EGF effect is still readily observed, but no enhancement by the esterase is seen. SV40 virus-transformed 3T3 cells show no effect on deoxyglucose uptake after addition of 10 ng/ml EGF to the culture medium, but a response may be demonstrated after these cells are incubated for 12 hours or more in serumless medium. EFG stimulates transport of 3-O-methylglucose in stationary phase 3T3 and human fibroblasts but no EGF stimulation of alpha-amino-isobutyrate uptake in 3T3 cells is seen under conditions is reproted to inhibit intracellular degradation of human EGF by human fibroblasts, does not diminish the EGF effect on deoxyglucose uptake in human fibroblasts.  相似文献   

2.
3.
In response to epidermal growth factor (EGF) stimulation, the intrinsic protein tyrosine kinase of EGF receptor is activated, leading to tyrosine phosphorylation of several cellular substrate proteins, including the EGF receptor molecule itself. To test the mechanism of EGF receptor autophosphorylation in living cells, we established transfected cell lines coexpressing a kinase-negative point mutant of EGF receptor (K721A) with an active EGF receptor mutant lacking 63 amino acids from its carboxy terminus. The addition of EGF to these cells caused tyrosine phosphorylation of the kinase-negative mutant by the active receptor molecule, demonstrating EGF receptor cross-phosphorylation in living cells. After internalization the kinase-negative mutant and CD63 have separate trafficking pathways. This limits their association and the extent of cross-phosphorylation of K721A by CD63. The coexpression of the kinase-negative mutant together with active EGF receptors in the same cells suppressed the mitogenic response toward EGF as compared with that in cells that express active receptors alone. The presence of the kinase-negative mutant functions as a negative dominant mutation suppressing the response of active EGF receptors, probably by interfering with EGF-induced signal transduction. It appears, therefore, that crucial events of signal transduction occur before K721A and active EGF receptors are separated by their different endocytic itineraries.  相似文献   

4.
To investigate the role of receptor aggregation in EGF binding, we construct a mathematical model describing receptor dimerization (and higher levels of aggregation) that permits an analysis of the influence of receptor aggregation on ligand binding. We answer two questions: (a) Can Scatchard plots of EGF binding data be analyzed productively in terms of two noninteracting receptor populations with different affinities if EGF induced receptor aggregation occurs? No. If two affinities characterize aggregated and monomeric EGF receptors, we show that the Scatchard plot should have curvature characteristic of positively cooperative binding, the opposite of that observed. Thus, the interpretation that the high affinity population represents aggregated receptors and the low affinity population nonaggregated receptors is wrong. If the two populations are interpreted without reference to receptor aggregation, an important determinant of Scatchard plot shape is ignored. (b) Can a model for EGF receptor aggregation and EGF binding be consistent with the "negative curvature" (i.e., curvature characteristic of negatively cooperative binding) observed in most Scatchard plots of EGF binding data? Yes. In addition, the restrictions on the model parameters required to obtain negatively curved Scatchard plots provide new information about binding and aggregation. In particular, EGF binding to aggregated receptors must be negatively cooperative, i.e., binding to a receptor in a dimer (or higher oligomer) having one receptor already bound occurs with lower affinity than the initial binding event. A third question we consider is whether the model we present can be used to detect the presence of mechanisms other than receptor aggregation that are contributing to Scatchard plot curvature. For the membrane and cell binding data we analyzed, the best least squares fits of the model to each of the four data sets deviate systematically from the data, indicating that additional factors are also important in shaping the binding curves. Because we have controlled experimentally for many sources of receptor heterogeneity, we have limited the potential explanations for residual Scatchard plot curvature.  相似文献   

5.
To study the activity of the epidermal growth factor (EGF) receptor during EGF-directed internalization, liver epithelial cells were exposed to EGF at 37 degrees C for various periods of time, washed, and homogenized at 0 degrees C. EGF receptor autophosphorylation was assessed in homogenates using [gamma-32P]ATP. Autophosphorylation was stimulated 3- to 6-fold in homogenates of cells incubated with EGF (100 ng/ml) for 15 min but was at or below basal levels in homogenates of cells treated with EGF for 2.5-5 min. This was surprising because immunoblotting revealed that EGF receptor phosphotyrosine (P-Tyr) content in intact cells was near maximal from 30 s to 5 min after EGF treatment. Excess EGF (1 microgram/ml), added after homogenization but prior to the assay, increased autophosphorylation in homogenates of cells that had not been treated with EGF, but failed to increase activity in homogenates of cells treated with EGF in culture for 2.5-5 min. Suppression of tyrosine phosphorylation of an exogenous kinase substrate was also observed at times paralleling the suppression of EGF receptor autophosphorylation. The transient suppression of receptor autophosphorylation in the cell-free assay was not explained by persistent occupation of autophosphorylation sites by phosphate added in the intact cells. The sites were greater than 80% dephosphorylated during the homogenization. Additionally phosphatase inhibition that prevented the normal loss of EGF receptor P-Tyr in intact cells at 15 min did not affect the pattern of early (2.5-5 min) suppression and later (15 min) stimulation of autophosphorylation measured in the cell-free assay. The suppression was not explained by activation of protein kinase C in that depletion of greater than 95% of cellular protein kinase C activity by an 18-h incubation of cells with 10 microM 12-O-tetradecanoylphorbol 13-acetate (TPA) did not affect the early suppression of autophosphorylation in EGF-treated cells. Moreover, under the conditions tested, activation of protein kinase C by short-term treatment (0.5-10 min) with TPA or angiotensin II did not appreciably alter subsequent autophosphorylation in the cell-free assay. In contrast, a 30 degrees C preincubation of homogenates from cells with suppressed EGF receptor autophosphorylation led to the recovery of the ability of EGF to stimulate EGF receptor autophosphorylation. These results suggest that a rapid reversible protein kinase C-independent process prevents detection of EGF receptor kinase activity during an early phase of EGF-dependent receptor internalization.  相似文献   

6.
In the last few decades, several growth factors were identified in the testis of various mammalian species. Growth factors are shown to promote cell proliferation, regulate tissue differentiation, and modulate organogenesis. In the present investigation we have studied the localization of EGF and EGFR in the adult bovine testis by means of immunohistochemical method. Our results demonstrated that EGF and EGFR were localized solely to the bovine testicular germ cells (spermatogonia, spermatocytes, and round spermatids). In contrast, the somatic testicular cells (i.e., Sertoli, Leydig, and myofibroblast cells) exhibited no staining affinity. EGF and EGFR were additionally detected in the epithelial lining of straight tubules and rete testis. Interestingly, the distribution of EGF and EGFR in the germ cells was mainly dependent upon the cycle of the seminiferous epithelium since their localization appeared to be preponderant during the spermatogonia proliferation and during the meiotic and spermiogenic processes. In conclusion, such findings may suggest that EGF and EGFR are important paracrine and/or autocrine regulators of spermatogenesis in bovine.  相似文献   

7.
Decorin, a small leucine-rich proteoglycan, is a key regulator of tumor growth by acting as an antagonist of the epidermal growth factor receptor (EGFR) tyrosine kinase. To search for cell surface receptors interacting with decorin, we generated a decorin/alkaline phosphatase chimeric protein and used it to screen a cDNA library by expression cloning. We identified two strongly reactive clones that encoded either the full-length EGFR or its ectodomain. A physiologically relevant interaction between decorin and EGFR was confirmed in the yeast two-hybrid system and further validated by experiments using EGF/EGFR interaction and transient cell transfection assays. Using a panel of deletion mutants, decorin binding was mapped to a narrow region of the EGFR within its ligand-binding L2 domain. Moreover, the central leucine-rich repeat 6 of decorin was required for interaction with the EGFR. Site-directed mutagenesis of the EGFR L2 domain showed that a cluster of residues, His(394)-Ile(402), was essential for both decorin and EGF binding. In contrast, K465, previously shown to be cross-linked to epidermal growth factor (EGF), was required for EGF but not for decorin binding. Thus, decorin binds to a discrete region of the EGFR, partially overlapping with but distinct from the EGF-binding domain. These findings could lead to the generation of protein mimetics capable of suppressing EGFR function.  相似文献   

8.
The epidermal growth factor (EGF) receptor tyrosine kinase activity is required for both the earliest EGF-stimulated post-binding events (enhancement of inositol phosphate formation and Ca2+ influx, activation of Na+/H+ exchange), and the ultimate EGF-induced mitogenic response. To assess the role of EGF receptor kinase in EGF-induced metabolic effects (2-deoxyglucose and 2-aminoisobutyric acid uptake), we used NIH3T3 cells (clone 2.2), which do not possess endogenous EGF receptors and which were transfected with cDNA constructs encoding either wild type or kinase-deficient human EGF receptor (HER). In addition, we tested the importance of three HER autophosphorylation sites (Tyr-1068, Tyr-1148, and Tyr-1173) in transduction of EGF-stimulated 2-deoxyglucose uptake. Taking our data together, we conclude the following: (i) HER tyrosine kinase activity is required to elicit EGF stimulation of both 2-deoxyglucose and 2-aminoisobutyric acid uptake; (ii) mutations on individual HER autophosphorylation sites, Tyr-1068, Tyr-1148, and Tyr-1173 do not impair EGF-stimulated 2-deoxyglucose uptake.  相似文献   

9.
The precise regulation of epidermal growth factor receptor (EGFR) is crucial for its function in cellular growth control. Although many antibodies against EGFR have been developed and used to analyze its regulation and function, it is not yet easy to analyze activated EGFR specifically. Activated EGFR has been mainly detected by its phosphorylation state using anti-phospho-EGFR and anti-phosphotyrosine antibodies. In the present study, we have established novel monoclonal antibodies which recognize the activated EGFR independently of its phosphorylation. Our antibodies detected active state of EGFR in immunoprecipitation and immunofluorescence, by recognizing the epitopes which are exposed through the conformational change induced by ligand-binding. Furthermore, we found that our antibodies preferentially detected the conformation of constitutively active EGFR mutants found in lung cancer cell lines. These results indicate that our antibodies may become novel research and diagnostic tools for detecting and analyzing the conformation of active EGFR in various cells and tissues.  相似文献   

10.
Hydropathic complementariness (HC) has been proposed as a novel molecular recognition code for how two proteins can recognize one other and thus form a reversible complex. If a protein contains a segment of a few amino acid residues that is surface-exposed, plus in extended conformation, plus composed of residues whose hydropathy pattern is opposite to that of a correspondingly sized segment on the respective other protein, this protein may bind to the other one through such a segment of HC (1). In order to identify in a pair of proteins sequences of HC we have developed the program PUTATIVE SITES SEARCHER (PSS-1) (2), a name that alludes to the possibility that such a segment of HC could represent a putative contact "site". Here we describe the application of PSS-1 to the study of human epidermal growth factor (EGF) and human EGF receptor (EGF-R). Six segments of HC were identified, two of which, designated a and b, fall exactly into experimentally verified contact regions on EGF as well as on EGF-R. Site a consists of residues 25.AEIYMCV.19 of EGF ("half site" aEGF) and of residues 331.NIKHFKN.337 of the EGF-R ("half site" aEGF-R); site b consists of residues 34.VCNCAY.29 of EGF and residues 365.PQELDI.370 of the EGF-R. Most interestingly, both half sites aEGF and bEGF localize in loop B of hEGF which is recognized as being essential for receptor binding. Similar is true for the half sites aEGF-R and bEGF-R that localize in subdomain III (residues 314-445) of the extracellular part of the EGF-R, also identified to be responsible for EGF binding. Thus, each of the two theoretically predicted sites is composed of half sites whose functional importance is experimentally verified. This correspondence supports the principal suitability of PSS-1 and suggests that EGF binds to EGF-R at least in part by means of HC contacts besides using, most probably, also "classical" (i.e. non-HC-type) contacts (e.g. charge interactions or hydrophobic bonds).  相似文献   

11.
12.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

13.
We have shown previously that the epidermal growth factor (EGF) receptor is phosphorylated at Ser-1002 and that this phosphorylation is associated with desensitization of the EGF receptor. Ser-1002 is followed immediately by Pro-1003, a residue that may promote the adoption of a specific conformation at this site or severe as a recognition element for the interaction of the EGF receptor with other proteins. To examine these possibilities, we have mutated Pro-1003 of the EGF receptor to a Gly residue and have analyzed the effect of this mutation on EGF-stimulated signaling. Cells expressing the P1003G EGF receptors exhibited higher EGF-stimulated autophosphorylation and synthetic peptide phosphorylation compared to cells expressing wild-type EGF receptors. In addition, the ability of EGF to stimulate PI 3-kinase activity and mitogen-activated protein kinase activity was enhanced in cells expressing the P1003G EGF receptor. Cells expressing P1003G receptors also demonstrated an increased ability to form colonies in soft agar in response to EGF. These results indicate that mutation of Pro-1003 leads to a potentiation of the biological effects of EGF. The findings are consistent with the hypothesis that Pro-1003 plays a role in a form of regulation that normally suppresses EGF receptor function.  相似文献   

14.
The capacity of cultured human fibroblasts to bind 125I-labeled epidermal growth factor (EGF) was measured during protein synthesis inhibition and reinitiation. Protein synthesis was inhibited by incubation of human fibroblasts in histidine-free medium supplemented with L-histidinol to produce a stringent amino acid starvation. Under these conditions 125 I-EGF binding activity decreased with a half-life of 14.5 hours. Protein synthesis could be rapidly reinitiated by the addition of L-histidine to human fibroblasts which had been preincubated in histidinol containing media for 36 to 48 hours. 125I-EGF binding activity rapidly increased upon the reinitiation of protein synthesis. In the presence of serum 100% of the original binding capacity was recovered ten hours after the reinitiation or protein synthesis, while 70% of the binding capacity was recovered in 12 hours in serum-free media. The recovery of 125I-EGF binding activity after the reinitiation of protein synthesis, was not blocked by the presence of Actinomycin D, indicating that the messenger RNA for the EGF receptor may accumulate during the period of histidinol-mediated inhibition of protein synthesis. The time course of recovery of 125I-EGF binding activity after the reinitiation of protein synthesis is very similar to that observed during the recovery of receptor activity following "down regulation" of EGF receptor activity. Recovery from down regulation, however, was markedly sensitive to Actinomycin D.  相似文献   

15.
The tyrosine kinase activity of the epidermal growth factor receptor (EGFR-TK) was determined at varying poly-Glu6Ala3Tyr1 (GAT) or [Val5]-angiotensin II (AT) and constant ATP concentrations and vice versa. With GAT as substrate, double reciprocal plots intersected practically on the abscissa following EGFR-TK pre-activation with EGF, but below the abscissa without EGF pre-activation. The EGFR-TK inhibitors App(NH)p (5'-adenylyl-beta, gamma-imidodiphosphate) and ADP were competitive with ATP and noncompetitive with GAT. Four families of 1/v vs. 1/[ATP] plots, constructed at different fixed concentrations of ADP and a different constant concentration of GAT for each family, yielded Slope1/ATP replots which intersected to the left of the ordinate and below the abscissa. GAT and AT, as cosubstrates, were competitive with each other and noncompetitive with ATP; 1/v vs. 1/[GAT] or 1/[AT] plots were hyperbolic and reached horizontal asymptotes when v was expressed as the rate of common product formation. All data were subjected to computer best-fit analysis by a program written especially for this purpose. We conclude that (i) the EGFR-TK reaction follows a Sequential Bi-Bi Rapid Equilibrium Random mechanism, and (ii) EGF induces conformational changes in the EGFR-TK active center which lead to marked decreases in the apparent dissociation constants of both substrates of the kinase reaction and a concomitant increase in initial velocities and Vmax (apparent).  相似文献   

16.
Recently, we demonstrated that hydrogen peroxide (H2O2) inhibits the internalization of the epidermal growth factor (EGF) receptor and the EGF-induced mono-ubiquitination of EGF receptor pathway substrate clone #15 (Eps15) in fibroblasts. In addition, it was suggested that EGF receptor internalization might be inhibited by H2O2 by inhibition of ubiquitination of proteins involved in endocytosis. Here, we show that H2O2 also inhibits the poly-ubiquitination of the EGF receptor in fibroblasts. Furthermore, recovery of the cells resulted in re-establishment of ubiquitination of both the EGF receptor and Eps15 and coincided with restoration of internalization of those receptors that had bound EGF in the presence of H2O2. In addition, EGF receptor internalization was inhibited by the sulphydryl reagent N-ethylmaleimide (NEM), indicating that intact SH groups might be required for receptor-mediated endocytosis. Furthermore, H2O2 rapidly induced an increase in the cellular ratio of GSSG:GSH (oxidized glutathione:reduced glutathione) and removal of H2O2 resulted in a fast restoration of the ratio of GSSG:GSH. Therefore, these results suggest a relation between the inhibition of internalization ubiquitination and an increase in GSSG:GSH ratio, which strengthens the hypothesis that H2O2 inhibits EGF receptor internalization by an inhibition of ubiquitination of proteins involved in EGF receptor-mediated endocytosis.  相似文献   

17.
The binding of epidermal growth factor (EGF) to its receptor induces tyrosine phosphorylation of phospholipase C gamma (PLC gamma), which appears to be necessary for its activation leading to phosphatidyl inositol (PI) hydrolysis. Moreover, EGF-receptor (EGF-R) activation and autophosphorylation results in binding of PLC gamma to the tyrosine phosphorylated carboxy-terminus of the receptor. To gain further insights into the mechanisms and interactions regulating these processes, we have analyzed transfected NIH-3T3 cells expressing two EGF-R carboxy-terminal deletion mutants (CD63 and CD126) with reduced capacity to stimulate PI hydrolysis, Ca2+ rises, and DNA synthesis. In fact, the CD126 mutant lacking 126 carboxy-terminal amino acids, including four tyrosine autophosphorylation sites, was unable to stimulate PI hydrolysis or Ca2+ rise in response to EGF. Surprisingly, EGF binding to the cell lines expressing CD63 or CD126 mutants was followed by similar stimulation of tyrosine phosphorylation of PLC gamma. Our results suggest that although necessary, tyrosine phosphorylation of PLC gamma may not be sufficient for stimulation and PI hydrolysis. It is clear, however, that the carboxy-terminal region of EGF-R is involved in regulation of interactions with cellular targets and therefore plays a crucial role in postreceptor signaling pathways.  相似文献   

18.
As a first step toward developing a structural map of key sites on the epidermal growth factor (EGF) receptor, we have used resonance energy transfer to measure the distance of closest approach between the receptor-bound growth factor molecule and lipid molecules at the surface of the plasma membrane. EGF, specifically labeled at its amino terminus with fluorescein 5-isothiocyanate, was used as an energy donor in these experiments, while either octadecylrhodamine B or octadecylrhodamine 101, inserted into plasma membranes isolated from human epidermoid carcinoma (A431) cells, served as the energy acceptors. The energy transfer measurements indicate that the amino terminus of the bound growth factor is about 67 A away from the plasma membrane. On the basis of the dimensions of the EGF molecule, this suggests that EGF binds to a site on its receptor that is a considerable distance (52-82 A) from the surface of these cells. Identical results were obtained under conditions where the receptor functions as an active tyrosine kinase, suggesting that the relative juxtaposition of the EGF binding domain to the membrane surface does not change with receptor autophosphorylation or with the activation of the receptor tyrosine kinase activity.  相似文献   

19.
A monoclonal antibody, EGR/ G49 , raised against the receptor for epidermal growth factor (EGF) present in A431 cells inhibits EGF binding by decreasing the affinity of the major population of low affinity receptors while leaving the minor high affinity population relatively unperturbed. The antibody, which binds to a carbohydrate determinant at a site distinct from the EGF binding site, induces clustering and internalisation of the receptor without stimulating the EGF receptor-kinase or affecting its ability to undergo stimulation by EGF. It is toxic to A431 cells and induces morphological changes similar to those seen when these cells are challenged with EGF in the concentration range 1-10 nM. These results suggest that high and low affinity EGF receptors can be distinguished and that they may serve different functions.  相似文献   

20.
The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N‐glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF–EGFR binding takes place through a large‐scale induced‐fitting mechanism. Proteins 2017; 85:561–570. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号