首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-prolyl aminopeptidases catalyze the removal of a penultimate prolyl residue from the N termini of peptides. Mammalian X-prolyl aminopeptidases are shown to be responsible for the degradation of bradykinin, a blood pressure regulator peptide, and have been linked to myocardial infarction. The x-ray crystal structure of human cytosolic X-prolyl aminopeptidase (XPN-PEP1) was solved at a resolution of 1.6 angstroms. The structure reveals a dimer with a unique three-domain organization in each subunit, rather than the two domains common to all other known structures of X-prolyl aminopeptidase and prolidases. The C-terminal catalytic domain of XPNPEP1 coordinates two metal ions and shares a similar fold with other prolyl aminopeptidases. Metal content analysis and activity assays confirm that the enzyme is double Mn(II) dependent for its activity, which contrasts with the previous notion that each XPNPEP1 subunit contains only one Mn(II) ion. Activity assays on an E41A mutant demonstrate that the acidic residue, which was considered as a stabilizing factor in the protonation of catalytic residue His498, plays only a marginal role in catalysis. Further mutagenesis reveals the significance of the N-terminal domain and dimerization for the activity of XPNPEP1, and we provide putative structural explanations for their functional roles. Structural comparisons further suggest mechanisms for substrate selectivity in different X-prolyl peptidases.  相似文献   

2.
Protein degradation by aminopeptidases is involved in bacterial responses to stress. Escherichia coli produces two metal‐dependent M17 family leucine aminopeptidases (LAPs), aminopeptidase A (PepA) and aminopeptidase B (PepB). Several structures have been solved for PepA as well as other bacterial M17 peptidases. Herein, we report the first structures of a PepB M17 peptidase. The E. coli PepB protein structure was determined at a resolution of 2.05 and 2.6 Å. One structure has both Zn2+ and Mn2+, while the second structure has two Zn2+ ions bound to the active site. A 2.75 Å apo structure is also reported for PepB from Yersinia pestis. Both proteins form homohexamers, similar to the overall arrangement of PepA and other M17 peptidases. However, the divergent N‐terminal domain in PepB is much larger resulting in a tertiary structure that is more expanded. Modeling of a dipeptide substrate into the C‐terminal LAP domain reveals contacts that account for PepB to uniquely cleave after aspartate.  相似文献   

3.
M24B peptidases cleaving Xaa-Pro bond in dipeptides are prolidases whereas those cleaving this bond in longer peptides are aminopeptidases-P. Bacteria have small aminopeptidases-P (36-39 kDa), which are diverged from canonical aminopeptidase-P of Escherichia coli (50 kDa). Structure-function studies of small aminopeptidases-P are lacking. We report crystal structures of small aminopeptidases-P from E. coli and Deinococcus radiodurans, and report substrate-specificities of these proteins and their ortholog from Mycobacterium tuberculosis. These are aminopeptidases-P, structurally close to small prolidases except for absence of dipeptide-selectivity loop. We noticed absence of this loop and conserved arginine in canonical archaeal prolidase (Maher et al., Biochemistry. 43, 2004, 2771-2783) and questioned its classification. Our enzymatic assays show that this enzyme is an aminopeptidase-P. Further, our mutagenesis studies illuminate importance of DXRY sequence motif in bacterial small aminopeptidases-P and suggest common evolutionary origin with human XPNPEP1/XPNPEP2. Our analyses reveal sequence/structural features distinguishing small aminopeptidases-P from other M24B peptidases.  相似文献   

4.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

5.
Lon protease is evolutionarily conserved in prokaryotes and eukaryotic organelles. The primary function of Lon is to selectively degrade abnormal and certain regulatory proteins to maintain the homeostasis in vivo. Lon mainly consists of three functional domains and the N‐terminal domain is required for the substrate selection and recognition. However, the precise contribution of the N‐terminal domain remains elusive. Here, we determined the crystal structure of the N‐terminal 192‐residue construct of Lon protease from Mycobacterium avium complex at 2.4 å resolution,and measured NMR‐relaxation parameters of backbones. This structure consists of two subdomains, the β‐strand rich N‐terminal subdomain and the five‐helix bundle of C‐terminal subdomain, connected by a flexible linker,and is similar to the overall structure of the N domain of Escherichia coli Lon even though their sequence identity is only 26%. The obtained NMR‐relaxation parameters reveal two stabilized loops involved in the structural packing of the compact N domain and a turn structure formation. The performed homology comparison suggests that structural and sequence variations in the N domain may be closely related to the substrate selectivity of Lon variants. Our results provide the structure and dynamics characterization of a new Lon N domain, and will help to define the precise contribution of the Lon N‐terminal domain to the substrate recognition.  相似文献   

6.
The diffusible factor synthase XanB2, originally identified in Xanthomonas campestris pv. campestris (Xcc), is highly conserved across a wide range of bacterial species, but its substrate and catalytic mechanism have not yet been investigated. Here, we show that XanB2 is a unique bifunctional chorismatase that hydrolyses chorismate, the end‐product of the shikimate pathway, to produce 3‐hydroxybenzoic acid (3‐HBA) and 4‐HBA. 3‐HBA and 4‐HBA are respectively associated with the yellow pigment xanthomonadin biosynthesis and antioxidant activity in Xcc. We further demonstrate that XanB2 is a structurally novel enzyme with three putative domains. It catalyses 3‐HBA and 4‐HBA biosynthesis via a unique mechanism with the C‐terminal YjgF‐like domain conferring activity for 3‐HBA biosynthesis and the N‐terminal FGFG motif‐containing domain responsible for 4‐HBA biosynthesis. Furthermore, we show that Xcc produces coenzyme Q8 (CoQ8) via a new biosynthetic pathway independent of the key chorismate‐pyruvate lyase UbiC. XanB2 is the alternative source of 4‐HBA for CoQ8 biosynthesis. The similar CoQ8 biosynthetic pathway, xanthomonadin biosynthetic gene cluster and XanB2 homologues are well conserved in the bacterial species within Xanthomonas, Xylella, Xylophilus, Pseudoxanthomonas, Rhodanobacter, Frateuria, Herminiimonas and Variovorax, suggesting that XanB2 may be a conserved metabolic link between the shikimate pathway, ubiquinone and xanthomonadin biosynthetic pathways in diverse bacteria.  相似文献   

7.
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two fromE. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the –3, –1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes inEscherichia coli that can degrade a signal peptidein vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degredation of an intact signal peptidein vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.  相似文献   

8.
Streptococcus pneumoniae Sp1610, a Class‐I fold S‐adenosylmethionine (AdoMet)‐dependent methyltransferase, is a member of the COG2384 family in the Clusters of Orthologous Groups database, which catalyzes the methylation of N1‐adenosine at position 22 of bacterial tRNA. We determined the crystal structure of Sp1610 in the ligand‐free and the AdoMet‐bound forms at resolutions of 2.0 and 3.0 Å, respectively. The protein is organized into two structural domains: the N‐terminal catalytic domain with a Class I AdoMet‐dependent methyltransferase fold, and the C‐terminal substrate recognition domain with a novel fold of four α‐helices. Observations of the electrostatic potential surface revealed that the concave surface located near the AdoMet binding pocket was predominantly positively charged, and thus this was predicted to be an RNA binding area. Based on the results of sequence alignment and structural analysis, the putative catalytic residues responsible for substrate recognition are also proposed.  相似文献   

9.
Prolyl oligopeptidase (POP) is a serine protease, unique for its ability to cleave various small oligopeptides shorter than 30 amino acids. POP is an important drug target since it is implicated in various neurological disorders. Although there is structural evidence that bacterial POPs undergo huge interdomain movements and acquire an “open” state in the substrate‐unbound form, hitherto, no crystal structure is available in the substrate‐unbound domain‐open form of eukaryotic POPs. Indeed, there is no difference between the substrate‐unbound/bound states of eukaryotic POPs. This raises unanswered questions about whether difference in the substrate access pathway exists between bacterial and eukaryotic POPs. Here, we have used normal mode analysis and molecular dynamics to unravel the mechanism of substrate entry in mammalian POPs, which has been debated until now. Motions observed using normal modes of porcine and bacterial POPs were analyzed and compared, augmented by molecular dynamics of these proteins. Identical to bacterial POPs, interdomain opening was found to be the possible pathway for the substrate‐gating in mammals as well. On the basis of our analyses and evidences, a mechanistic model of substrate entry in POPs has been proposed. Up‐down movement of N‐terminal hydrolase domain resulted in twisting motion of two domains, followed by the conformational changes of interdomain loop regions, which facilitate interdomain opening. Similar to bacterial POPs, an open form of porcine POP is also proposed with domain‐closing motion. This work has direct implications for the development of novel inhibitors of mammalian POPs to understand the etiology of various neurological diseases. Proteins 2014; 82:1428–1443. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
YbbR domains are widespread throughout Eubacteria and are expressed as monomeric units, linked in tandem repeats or cotranslated with other domains. Although the precise role of these domains remains undefined, the location of the multiple YbbR domain‐encoding ybbR gene in the Bacillus subtilis glmM operon and its previous identification as a substrate for a surfactin‐type phosphopantetheinyl transferase suggests a role in cell growth, division, and virulence. To further characterize the YbbR domains, structures of two of the four domains (I and IV) from the YbbR‐like protein of Desulfitobacterium hafniense Y51 were solved by solution nuclear magnetic resonance and X‐ray crystallography. The structures show the domains to have nearly identical topologies despite a low amino acid identity (23%). The topology is dominated by β‐strands, roughly following a “figure 8” pattern with some strands coiling around the domain perimeter and others crossing the center. A similar topology is found in the C‐terminal domain of two stress‐responsive bacterial ribosomal proteins, TL5 and L25. Based on these models, a structurally guided amino acid alignment identifies features of the YbbR domains that are not evident from naïve amino acid sequence alignments. A structurally conserved cis‐proline (cis‐Pro) residue was identified in both domains, though the local structure in the immediate vicinities surrounding this residue differed between the two models. The conservation and location of this cis‐Pro, plus anchoring Val residues, suggest this motif may be significant to protein function.  相似文献   

11.
Aminopeptidases are ubiquitous hydrolases that cleave the N‐terminal residues of proteins and oligopeptides. They are broadly distributed throughout all kingdoms of life and have been implicated in a wide variety of physiological processes, including viral infection, parasite metabolism, protein processing, regulation of peptide hormones, and cancer cell proliferation. Members of the M1 family, also termed gluzincins, are defined by two highly conserved motifs in the catalytic domain: a zinc‐binding motif, HEXXH‐(X18)‐E; and an exopeptidase motif, GXMEN. We report the high‐resolution X‐ray structures of E. coli aminopeptidase N (PepN) in complex with three aminobenzosuberone scaffolds that display various Ki values (50, 0.33, and 0.034 µM) and provide a compelling view of the outstanding selectivity of these chemical entities for the M1 aminopeptidases. This series of inhibitors interacts as transition state mimics with highly conserved residues of the catalytic machinery and substrate recognition sites. Structural comparisons and model‐building studies allowed a deep interpretation of the SAR observed for bacterial, as well as mammalian enzymes. Proteins 2017; 85:1413–1421. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
In this study, we enhanced the catalytic efficiency and thermostability of keratinase KerSMD by replacing its N/C‐terminal domains with those from a homologous protease, KerSMF, to degrade feather waste. Replacement of the N‐terminal domain generated a mutant protein with more than twofold increased catalytic activity towards casein. Replacement of the C‐terminal domain obviously improved keratinolytic activity and increased the kcat/Km value on a synthetic peptide, succinyl‐Ala‐Ala‐Pro‐Phe‐p‐nitroanilide, by 54.5%. Replacement of both the N‐ and C‐terminal domains generated a more stable mutant protein, with a Tm value of 64.60 ± 0.65°C and a half‐life of 244.6 ± 2 min at 60°C, while deletion of the C‐terminal domain from KerSMD or KerSMF resulted in mutant proteins exhibiting high activity under mesophilic conditions. These findings indicate that the pre‐peptidase C‐terminal domain and N‐propeptide are not only important for substrate specificity, correct folding and thermostability but also support the ability of the enzyme to convert feather waste into feed additives.  相似文献   

13.
M C Montel  J Labadie 《Biochimie》1982,64(1):37-44
During the growth of Empedobacter collagenolyticum on a medium with gelatin, only one proteinase, a collagenase, was excreted in the culture medium. No other proteolytic activity was detected in the extracellular medium or in acellular extracts. The other proteases of this bacteria are principally intracellular peptidases. By electrophoresis of an acellular extract five peptidases were separated; they were aminopeptidases and dipeptidases. Some of them exhibited a specificity towards peptides with aminoacid frequently found in collagen; Gly-Leu, Gly-Pro, Pro-Gly-Gly. Two other peptidases seem to have special specificity, one of them hydrolyses peptides with lysine residues at the NH2 terminal end, the other one hydrolyses dipeptides of the structure Lys-X. These enzymes were also found in the culture medium; they certainly play an important role in bacterial nutrition.  相似文献   

14.
Coggill P  Bateman A 《PloS one》2012,7(5):e35575
We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times.  相似文献   

15.
The Cu+‐ATPase CopA from Archaeoglobus fulgidus belongs to the P1B family of the P‐type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P1B‐1‐type ATPases is the presence of soluble metal binding domains at the N‐terminus (N‐MBDs). The N‐MBDs exhibit a conserved ferredoxin‐like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N‐MBDs enable Cu+ regulation of turnover rates apparently through Cu‐sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N‐terminal MBD and a C‐terminal MBD (C‐MBD). The functional role of the unique C‐MBD has not been established. Here, we report the crystal structure of the apo, oxidized C‐MBD to 2.0 Å resolution. In the structure, two C‐MBD monomers form a domain‐swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C‐MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A‐domain), has been investigated. Interestingly, the C‐MBD interacts specifically with both of these domains, independent of the presence of Cu+ or nucleotides. These data reinforce the uniqueness of the C‐MBD and suggest a distinct structural role for the C‐MBD in CopA transport. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
BackgroundM20 aminopeptidases, such as Peptidase T (PepT), are implicated in the hydrolysis of oligopeptides during the terminal stages of protein degradation pathway to maintain turnover. Therefore, specific inhibition of PepT bores well for the development of novel next-generation antileishmanials. This work describes the metal dependence, substrate preferences and inhibition of PepT, and demonstrates in detail the role of its two conserved substrate binding residues.MethodsPepT was purified and characterized using a scheme of peptide substrates and peptidomimetic inhibitors. Residues T364 and N378 were mutated and characterized with an array of biochemical, biophysical and structural biology methods.ResultsPepT sequence carries conserved motifs typical of M20 peptidases and our work on its biochemistry shows that this cytosolic enzyme carries broad substrate specificity with best cleavage preference for peptides carrying alanine at the P1 position. Peptidomimetics amastatin and actinonin occupied S1 pocket by competing with the substrate for binding to active site and inhibited PepT potently, while arphamenine A and bestatin were less effective inhibitors. We further show that the mutation of conserved substrate binding residues (T364 and N378) to alanine affects structure, reduces substrate binding and alters the amidolytic activity of this dimeric enzyme.ConclusionsPepT preferentially hydrolyzes oligopeptides carrying alanine at P1 position and is potently inhibited by peptidomimetics. Reduced substrate binding after mutations was a key factor involved in amidolytic digressions.General significanceThis study provides insights for further exploration of the druggability of PepT and highlights prospective applications of this enzyme along with its mutazyme T364A/N378A.  相似文献   

17.
Debanu Das  Robert D. Finn  Polat Abdubek  Tamara Astakhova  Herbert L. Axelrod  Constantina Bakolitsa  Xiaohui Cai  Dennis Carlton  Connie Chen  Hsiu‐Ju Chiu  Michelle Chiu  Thomas Clayton  Marc C. Deller  Lian Duan  Kyle Ellrott  Carol L. Farr  Julie Feuerhelm  Joanna C. Grant  Anna Grzechnik  Gye Won Han  Lukasz Jaroszewski  Kevin K. Jin  Heath E. Klock  Mark W. Knuth  Piotr Kozbial  S. Sri Krishna  Abhinav Kumar  Winnie W. Lam  David Marciano  Mitchell D. Miller  Andrew T. Morse  Edward Nigoghossian  Amanda Nopakun  Linda Okach  Christina Puckett  Ron Reyes  Henry J. Tien  Christine B. Trame  Henry van den Bedem  Dana Weekes  Tiffany Wooten  Qingping Xu  Andrew Yeh  Jiadong Zhou  Keith O. Hodgson  John Wooley  Marc‐André Elsliger  Ashley M. Deacon  Adam Godzik  Scott A. Lesley  Ian A. Wilson 《Protein science : a publication of the Protein Society》2010,19(11):2131-2140
Sufu (Suppressor of Fused), a two‐domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu‐like proteins have previously been identified based on sequence similarity to the N‐terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu‐like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu‐like protein. The structure revealed a striking similarity to the N‐terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ~15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu‐like proteins that are present in ~200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam.  相似文献   

18.
Prolidases, metalloproteases that catalyze the cleavage of Xaa-Pro dipeptides, are conserved enzymes found in prokaryotes and eukaryotes. In humans, prolidase is crucial for the recycling of collagen. To further characterize the essential elements of this enzyme, we utilized the Escherichia coli prolidase, PepQ, which shares striking similarity with eukaryotic prolidases. Through structural and bioinformatic insights, we have extended previous characterizations of the prolidase active site, uncovering a key component for substrate specificity. Here we report the structure of E. coli PepQ, solved at 2.0 Å resolution. The structure shows an antiparallel, dimeric protein, with each subunit containing N-terminal and C-terminal domains. The C-terminal domain is formed by the pita-bread fold typical for this family of metalloproteases, with two Mg(II) ions coordinated by five amino-acid ligands. Comparison of the E. coli PepQ structure and sequence with homologous structures and sequences from a diversity of organisms reveals distinctions between prolidases from Gram-positive eubacteria and archaea, and those from Gram-negative eubacteria, including the presence of loop regions in the E. coli protein that are conserved in eukaryotes. One such loop contains a completely conserved arginine near the catalytic site. This conserved arginine is predicted by docking simulations to interact with the C-terminus of the substrate dipeptide. Kinetic analysis using both a charge-neutralized substrate and a charge-reversed variant of PepQ support this conclusion, and allow for the designation of a new role for this key region of the enzyme active site.  相似文献   

19.
Escherichia coli encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in ΔpepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of ΔpepN during nutritional downshift and high temperature stress. Purified PepA and PepB display broad substrate specificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in ΔpepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms.  相似文献   

20.
Glycogen serves as major energy storage in most living organisms. GlgX, with its gene in the glycogen degradation operon, functions in glycogen catabolism by selectively catalyzing the debranching of polysaccharide outer chains in bacterial glycosynthesis. GlgX hydrolyzes α‐1,6‐glycosidic linkages of phosphorylase‐limit dextrin containing only three or four glucose subunits produced by glycogen phosphorylase. To understand its mechanism and unique substrate specificity toward short branched α‐polyglucans, we determined the structure of GlgX from Escherichia Coli K12 at 2.25 Å resolution. The structure reveals a monomer consisting of three major domains with high structural similarity to the subunit of TreX, the oligomeric bifunctional glycogen debranching enzyme (GDE) from Sulfolobus. In the overlapping substrate binding groove, conserved residues Leu270, Asp271, and Pro208 block the cleft, yielding a shorter narrow GlgX cleft compared to that of TreX. Residues 207–213 form a unique helical conformation that is observed in both GlgX and TreX, possibly distinguishing GDEs from isoamylases and pullulanases. The structural feature observed at the substrate binding groove provides a molecular explanation for the unique substrate specificity of GlgX for G4 phosphorylase‐limit dextrin and the discriminative activity of TreX and GlgX toward substrates of varying lengths. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号