共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Functional clues from the crystal structure of an orphan periplasmic ligand‐binding protein from Treponema pallidum 下载免费PDF全文
Chad. A. Brautigam Ranjit K. Deka Wei Z. Liu Diana R. Tomchick Michael V. Norgard 《Protein science : a publication of the Protein Society》2017,26(4):847-856
The spirochete Treponema pallidum is the causative agent of syphilis, a sexually transmitted infection of major global importance. Other closely related subspecies of Treponema also are the etiological agents of the endemic treponematoses, such as yaws, pinta, and bejel. The inability of T. pallidum and its close relatives to be cultured in vitro has prompted efforts to characterize T. pallidum's proteins structurally and biophysically, particularly those potentially relevant to treponemal membrane biology, with the goal of possibly revealing the functions of those proteins. This report describes the structure of the treponemal protein Tp0737; this polypeptide has a fold characteristic of a class of periplasmic ligand‐binding proteins associated with ABC‐type transporters. Although no ligand for the protein was observed in electron‐density maps, and thus the nature of the native ligand remains obscure, the structural data described herein provide a foundation for further efforts to elucidate the ligand and thus the function of this protein in T. pallidum. 相似文献
3.
Schmitzová J Rasche N Dybkov O Kramer K Fabrizio P Urlaub H Lührmann R Pena V 《The EMBO journal》2012,31(9):2222-2234
The yeast splicing factor Cwc2 contacts several catalytically important RNA elements in the active spliceosome, suggesting that Cwc2 is involved in determining their spatial arrangement at the spliceosome's catalytic centre. We have determined the crystal structure of the Cwc2 functional core, revealing how a previously uncharacterized Torus domain, an RNA recognition motif (RRM) and a zinc finger (ZnF) are tightly integrated in a compact folding unit. The ZnF plays a pivotal role in the architecture of the whole assembly. UV-induced crosslinking of Cwc2-U6 snRNA allowed the identification by mass spectrometry of six RNA-contacting sites: four in or close to the RRM domain, one in the ZnF and one on a protruding element connecting the Torus and RRM domains. The three distinct regions contacting RNA are connected by a contiguous and conserved positively charged surface, suggesting an expanded interface for RNA accommodation. Cwc2 mutations confirmed that the connector element plays a crucial role in splicing. We conclude that Cwc2 acts as a multipartite RNA-binding platform to bring RNA elements of the spliceosome's catalytic centre into an active conformation. 相似文献
4.
The structure of Plasmodium falciparum 3D7_0606800 reveals a bi‐lobed architecture that supports re‐annotation as a Venus Flytrap protein 下载免费PDF全文
Michelle L. Parker Raghavendran Ramaswamy Kyle van Gordon Cameron J. Powell Jürgen Bosch Martin J. Boulanger 《Protein science : a publication of the Protein Society》2017,26(9):1878-1885
Plasmodium falciparum, the causative agent of malaria, employs a diverse array of surface displayed proteins to promote dissemination and establish infection in the human host. Of these, Pf3D7_0606800 is highly immunogenic and has been designated a potential top 10 candidate for inclusion in a multicomponent malarial vaccine. The role of Pf3D7_0606800 in parasite biology, however, is unknown and its characterization has been complicated by a lack of sequence identity with proteins of known structure or function. Towards elucidating Pf3D7_0606800 function, we determined its structure to a resolution of 2.35 Å using selenium single wavelength anomalous dispersion. A bi‐lobed architecture displays the core structural hallmarks of V enus F lyt rap (VFT) proteins prompting us to re‐annotate Pf3D7_0606800 as PfVFT1. Structural analysis further revealed an extended inter‐lobe groove that, when interrogated by molecular docking, appears well suited to bind peptide‐based ligands. Collectively, our structural characterization of the highly antigenic P. falciparum surface protein PfVFT1 provides intriguing functional insight and establishes a structural template that could prove valuable for malaria vaccine engineering studies. 相似文献
5.
Complex structure of cytochrome c–cytochrome c oxidase reveals a novel protein–protein interaction mode 下载免费PDF全文
Satoru Shimada Kyoko Shinzawa‐Itoh Junpei Baba Shimpei Aoe Atsuhiro Shimada Eiki Yamashita Jiyoung Kang Masaru Tateno Shinya Yoshikawa Tomitake Tsukihara 《The EMBO journal》2017,36(3):291-300
Mitochondrial cytochrome c oxidase (CcO) transfers electrons from cytochrome c (Cyt.c) to O2 to generate H2O, a process coupled to proton pumping. To elucidate the mechanism of electron transfer, we determined the structure of the mammalian Cyt.c–CcO complex at 2.0‐Å resolution and identified an electron transfer pathway from Cyt.c to CcO. The specific interaction between Cyt.c and CcO is stabilized by a few electrostatic interactions between side chains within a small contact surface area. Between the two proteins are three water layers with a long inter‐molecular span, one of which lies between the other two layers without significant direct interaction with either protein. Cyt.c undergoes large structural fluctuations, using the interacting regions with CcO as a fulcrum. These features of the protein–protein interaction at the docking interface represent the first known example of a new class of protein–protein interaction, which we term “soft and specific”. This interaction is likely to contribute to the rapid association/dissociation of the Cyt.c–CcO complex, which facilitates the sequential supply of four electrons for the O2 reduction reaction. 相似文献
6.
7.
Pravin Kumar Ardeschir Vahedi‐Faridi Wolfram Saenger Andreas Ziegler Barbara Uchanska‐Ziegler 《Protein science : a publication of the Protein Society》2009,18(1):37-49
Although there is X‐ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig‐like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor‐bound and ‐unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA‐A1 bound to a melanoma antigen‐encoding gene (MAGE)‐A1‐derived peptide in complex with a recombinant antibody fragment with TCR‐like specificity, Fab‐Hyb3. Here, we compare the X‐ray structure of HLA‐A1:MAGE‐A1 with that complexed with Fab‐Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab‐Hyb3 binding results in major rearrangements (up to 5.5 Å) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding‐induced conformational changes, as revealed by a comparison with MHC class I structures in TCR‐liganded and ‐unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA‐Cw4 and KIR2DL1. Therefore, conformational changes within the HLA‐A1:MAGE‐A1:Fab‐Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide‐dependent recognition of MHC molecules. 相似文献
8.
Crystal structure of the UBR‐box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding 下载免费PDF全文
Juliana Muñoz‐Escobar Guennadi Kozlov Kalle Gehring 《Protein science : a publication of the Protein Society》2017,26(10):2092-2097
The UBR‐box is a 70‐residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N‐terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR‐box containing E3 ubiquitin ligase that does not bind N‐terminal signals. Here, we present the crystal structure of the UBR‐box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR‐box fold. Analysis of the structure suggests that the absence of N‐terminal residue binding arises from the lack of an amino acid binding pocket. 相似文献
9.
Karin E. van Straaten Claudio F. Gonzalez Ricardo B. Valladares Xiaohui Xu Alexei V. Savchenko David A. R. Sanders 《Protein science : a publication of the Protein Society》2009,18(10):2196-2202
The structure of the Atu1476 protein from Agrobacterium tumefaciens was determined at 2 Å resolution. The crystal structure and biochemical characterization of this enzyme support the conclusion that this protein is an S-formylglutathione hydrolase (AtuSFGH). The three-dimensional structure of AtuSFGH contains the α/β hydrolase fold topology and exists as a homo-dimer. Contacts between the two monomers in the dimer are formed both by hydrogen bonds and salt bridges. Biochemical characterization reveals that AtuSFGH hydrolyzes C—O bonds with high affinity toward short to medium chain esters, unlike the other known SFGHs which have greater affinity toward shorter chained esters. A potential role for Cys54 in regulation of enzyme activity through S-glutathionylation is also proposed. 相似文献
10.
11.
Svetlana Pakhomova Benlian Gao William E. Boeglin Alan R. Brash Marcia E. Newcomer 《Protein science : a publication of the Protein Society》2009,18(12):2559-2568
True catalases are tyrosine‐liganded, usually tetrameric, hemoproteins with subunit sizes of ~55–84 kDa. Recently characterized hemoproteins with a catalase‐related structure, yet lacking in catalatic activity, include the 40–43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 Å X‐ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP‐2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide‐dependent peroxidase activity. MAP‐2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (~300/s) using organic hydroperoxides as co‐substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial “minicatalases”. Its structural features and the result of the enzyme assays support a role for MAP‐2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species. 相似文献
12.
Manish B. Shah Cheryl Ingram‐Smith Leroy L. Cooper Jun Qu Yu Meng Kerry S. Smith Andrew M. Gulick 《Proteins》2009,77(3):685-698
The acyl‐AMP forming family of adenylating enzymes catalyze two‐step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X‐ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl‐CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl‐CoA synthetase and 4‐chlorobenzoate:CoA ligase. Most interestingly, the acyl‐binding pocket of the new structure is compared with other acyl‐ and aryl‐CoA synthetases. A comparison of the acyl‐binding pocket of the acyl‐CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl‐binding pocket. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献
13.
Crystal structure of the Legionella pneumophila lem10 effector reveals a new member of the HD protein superfamily 下载免费PDF全文
Mariya Morar Elena Evdokimova Changsoo Chang Alexander W. Ensminger Alexei Savchenko 《Proteins》2015,83(12):2319-2325
Legionella pneumophila, the intracellular pathogen that can cause severe pneumonia known as Legionnaire's disease, translocates close to 300 effectors inside the host cell using Dot/Icm type IVB secretion system. The structure and function for the majority of these effector proteins remains unknown. Here, we present the crystal structure of the L. pneumophila effector Lem10. The structure reveals a multidomain organization with the largest C‐terminal domain showing strong structural similarity to the HD protein superfamily representatives. However, Lem10 lacks the catalytic His‐Asp residue pair and does not show any in vitro phosphohydrolase enzymatic activity, typical for HD proteins. While the biological function of Lem10 remains elusive, our analysis shows that similar distinct features are shared by a significant number of HD domains found in Legionella proteins, including the SidE family of effectors known to play an important role during infection. Taken together our data point to the presence of a specific group of non‐catalytic Legionella HD domains, dubbed LHDs, which are involved in pathogenesis. Proteins 2015; 83:2319–2325. © 2015 Wiley Periodicals, Inc. 相似文献
14.
Haley A. Brown James B. Thoden Peter A. Tipton Hazel M. Holden 《Protein science : a publication of the Protein Society》2018,27(2):441-450
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, continues to be a major threat to populations worldwide. Whereas the disease is treatable, the drug regimen is arduous at best with the use of four antimicrobials over a six‐month period. There is clearly a pressing need for the development of new therapeutics. One potential target for structure‐based drug design is the enzyme RmlA, a glucose‐1‐phosphate thymidylyltransferase. This enzyme catalyzes the first step in the biosynthesis of l ‐rhamnose, which is a deoxysugar critical for the integrity of the bacterium's cell wall. Here, we report the X‐ray structures of M. tuberculosis RmlA in complex with either dTTP or dTDP‐glucose to 1.6 Å and 1.85 Å resolution, respectively. In the RmlA/dTTP complex, two magnesium ions were observed binding to the nucleotide, both ligated in octahedral coordination spheres. In the RmlA/dTDP‐glucose complex, only a single magnesium ion was observed. Importantly, for RmlA‐type enzymes with known three‐dimensional structures, not one model shows the position of the magnesium ion bound to the nucleotide‐linked sugar. As such, this investigation represents the first direct observation of the manner in which a magnesium ion is coordinated to the RmlA product and thus has important ramifications for structure‐based drug design. In the past, molecular modeling procedures have been employed to derive a three‐dimensional model of the M. tuberculosis RmlA for drug design. The X‐ray structures presented herein provide a superior molecular scaffold for such endeavors in the treatment of one of the world's deadliest diseases. 相似文献
15.
Structural and SAXS analysis of Tle5–Tli5 complex reveals a novel inhibition mechanism of H2‐T6SS in Pseudomonas aeruginosa 下载免费PDF全文
Xiao‐Yun Yang Zong‐Qiang Li Zeng‐Qiang Gao Wen‐Jia Wang Zhi Geng Jian‐Hua Xu Zhun She Yu‐Hui Dong 《Protein science : a publication of the Protein Society》2017,26(10):2083-2091
Widely spread in Gram‐negative bacteria, the type VI secretion system (T6SS) secretes many effector‐immunity protein pairs to help the bacteria compete against other prokaryotic rivals, and infect their eukaryotic hosts. Tle5 and Tle5B are two phospholipase effector protein secreted by T6SS of Pseudomonas aeruginosa. They can facilitate the bacterial internalization process into human epithelial cells by interacting with Akt protein of the PI3K‐Akt signal pathway. Tli5 and PA5086‐5088 are cognate immunity proteins of Tle5 and Tle5B, respectively. They can interact with their cognate effector proteins to suppress their virulence. Here, we report the crystal structure of Tli5 at 2.8Å resolution and successfully fit it into the Small angle X‐ray scattering (SAXS) model of the complete Tle5–Tli5 complex. We identified two important motifs in Tli5 through sequence and structural analysis. One is a conserved loop‐β‐hairpin motif that exists in the Tle5 immunity homologs, the other is a long and sharp α‐α motif that directly interacts with Tle5 according to SAXS data. We also distinguished the structural features of Tle5 and Tle5B family immunity proteins. Together, our work provided insights into a novel inhibition mechanism that may enhance our understanding of phospholipase D family proteins. 相似文献
16.
Structural characterization reveals a novel bilobed architecture for the ectodomains of insect stage expressed Trypanosoma brucei PSSA‐2 and Trypanosoma congolense ISA 下载免费PDF全文
Raghavendran Ramaswamy Sarah Goomeshi Nobary Brett A. Eyford Terry W. Pearson Martin J. Boulanger 《Protein science : a publication of the Protein Society》2016,25(12):2297-2302
African trypanosomiasis, caused by parasites of the genus Trypanosoma, is a complex of devastating vector‐borne diseases of humans and livestock in sub‐Saharan Africa. Central to the pathogenesis of African trypanosomes is their transmission by the arthropod vector, Glossina spp. (tsetse fly). Intriguingly, the efficiency of parasite transmission through the vector is reduced following depletion of Trypanosoma brucei Procyclic‐Specific Surface Antigen‐2 (TbPSSA‐2). To investigate the underlying molecular mechanism of TbPSSA‐2, we determined the crystal structures of its ectodomain and that of its homolog T. congolense Insect Stage Antigen (TcISA) to resolutions of 1.65 Å and 2.45 Å, respectively using single wavelength anomalous dispersion. Both proteins adopt a novel bilobed architecture with the individual lobes displaying rotational flexibility around the central tether that suggest a potential mechanism for coordinating a binding partner. In support of this hypothesis, electron density consistent with a bound peptide was observed in the inter‐lob cleft of a TcISA monomer. These first reported structures of insect stage transmembrane proteins expressed by African trypanosomes provide potentially valuable insight into the interface between parasite and tsetse vector. 相似文献
17.
18.
Katsuyuki Miyaguchi 《Biology of the cell / under the auspices of the European Cell Biology Organization》2014,106(10):323-345
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X‐ray crystallography and single‐particle cryo‐electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative‐staining, rotary‐shadowing and freeze‐etching EM, which are categorised here as ‘direct imaging EM methods’. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome–translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three‐dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo. 相似文献
19.
The exosome‐binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase 下载免费PDF全文
Benjamin Schuch Monika Feigenbutz Debora L Makino Sebastian Falk Claire Basquin Phil Mitchell Elena Conti 《The EMBO journal》2014,33(23):2829-2846
The exosome is a conserved multi‐subunit ribonuclease complex that functions in 3′ end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10‐subunit core complex of the exosome (Exo‐10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4 to Exo‐10 in vitro is dependent upon both Rrp6 and Rrp47, whereas Mpp6 binds directly and independently of other cofactors. Crystallographic analyses reveal that the N‐terminal domains of Rrp6 and Rrp47 form a highly intertwined structural unit. Rrp6 and Rrp47 synergize to create a composite and conserved surface groove that binds the N‐terminus of Mtr4. Mutation of conserved residues within Rrp6 and Mtr4 at the structural interface disrupts their interaction and inhibits growth of strains expressing a C‐terminal GFP fusion of Mtr4. These studies provide detailed structural insight into the interaction between the Rrp6–Rrp47 complex and Mtr4, revealing an important link between Mtr4 and the core exosome. 相似文献
20.
Crystal structural characterization reveals novel oligomeric interactions of human voltage‐dependent anion channel 1 下载免费PDF全文
Toshiaki Hosaka Masateru Okazaki Tomomi Kimura‐Someya Yoshiko Ishizuka‐Katsura Kaori Ito Shigeyuki Yokoyama Kosuke Dodo Mikiko Sodeoka Mikako Shirouzu 《Protein science : a publication of the Protein Society》2017,26(9):1749-1758
Voltage‐dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high‐resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell‐free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad‐range screening using a bicelle crystallization method produced crystals in space groups C222 and P22121, which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P22121 were oriented anti‐parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β‐strands, hydrophilic interactions with loop regions, and protein–lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo‐ or hetero‐oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis‐regulating proteins in the Bcl‐2 family. 相似文献