共查询到20条相似文献,搜索用时 0 毫秒
1.
Ryo Uehara Riki Iwamoto Sayaka Aoki Takuya Yoshizawa Kazufumi Takano Hiroyoshi Matsumura Shun‐ichi Tanaka 《Protein science : a publication of the Protein Society》2020,29(9):2000-2008
A GH1 β‐glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4′‐galactosyllactose, a tri‐galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction. 相似文献
2.
《Protein science : a publication of the Protein Society》2018,27(8):1498-1508
Carbohydrate hydrolyzing α‐glucosidases are commonly found in microorganisms present in the human intestine microbiome. We have previously reported crystal structures of an α‐glucosidase from the human gut bacterium Blaubia (Ruminococcus) obeum (Ro‐αG1) and its substrate preference/specificity switch. This novel member of the GH31 family is a structural homolog of human intestinal maltase‐glucoamylase (MGAM) and sucrase–isomaltase (SI) with a highly conserved active site that is predicted to be common in Ro‐αG1 homologs among other species that colonize the human gut. In this report, we present structures of Ro‐αG1 in complex with the antidiabetic α‐glucosidase inhibitors voglibose, miglitol, and acarbose and supporting binding data. The in vitro binding of these antidiabetic drugs to Ro‐αG1 suggests the potential for unintended in vivo crossreaction of the α‐glucosidase inhibitors to bacterial α‐glucosidases that are present in gut microorganism communities. Moreover, analysis of these drug‐bound enzyme structures could benefit further antidiabetic drug development. 相似文献
3.
Jérôme Le Nours Leonardo De Maria Ditte Welner Christel T. Jørgensen Lars L. H. Christensen Torben V. Borchert Sine Larsen Leila Lo Leggio 《Proteins》2009,75(4):977-989
Microbial β‐1,4‐galactanases are glycoside hydrolases belonging to family 53, which degrade galactan and arabinogalactan side chains in the hairy regions of pectin, a major plant cell wall component. They belong to the larger clan GH‐A of glycoside hydrolases, which cover many different poly‐ and oligosaccharidase specificities. Crystallographic complexes of Bacillus licheniformis β‐1,4‐galactanase and its inactive nucleophile mutant have been obtained with methyl‐β(1→4)‐galactotetraoside, providing, for the first time, information on substrate binding to the aglycone side of the β‐1,4‐galactanase substrate binding groove. Using the experimentally determined subsites as a starting point, a β(1→4)‐galactononaose was built into the structure and subjected to molecular dynamics simulations giving further insight into the residues involved in the binding of the polysaccharide from subsite ?4 to +5. In particular, this analysis newly identified a conserved β‐turn, which contributes to subsites ?2 to +3. This β‐turn is unique to family 53 β‐1,4‐galactanases among all clan GH‐A families that have been structurally characterized and thus might be a structural signature for endo‐β‐1,4‐galactanase specificity. Proteins 2009. © 2008 Wiley‐Liss, Inc. 相似文献
4.
Claudia A. Simões‐Pires Bouchra Hmicha Andrew Marston Kurt Hostettmann 《Phytochemical analysis : PCA》2009,20(6):511-515
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Biosynthesis of the leucine derived α‐, β‐ and γ‐hydroxynitrile glucosides in barley (Hordeum vulgare L.) 下载免费PDF全文
Mohammed Saddik Motawie Carl Erik Olsen Birger Lindberg Møller Michael Foged Lyngkjær 《The Plant journal : for cell and molecular biology》2016,88(2):247-256
Barley (Hordeum vulgare L.) produces five leucine‐derived hydroxynitrile glucosides (HNGs), of which only epiheterodendrin is a cyanogenic glucoside. The four non‐cyanogenic HNGs are the β‐HNG epidermin and the γ‐HNGs osmaronin, dihydroosmaronin and sutherlandin. By analyzing 247 spring barley lines including landraces and old and modern cultivars, we demonstrated that the HNG level varies notably between lines whereas the overall ratio between the compounds is constant. Based on sequence similarity to the sorghum (Sorghum bicolor) genes involved in dhurrin biosynthesis, we identified a gene cluster on barley chromosome 1 putatively harboring genes that encode enzymes in HNG biosynthesis. Candidate genes were functionally characterized by transient expression in Nicotiana benthamiana. Five multifunctional P450s, including two CYP79 family enzymes and three CYP71 family enzymes, and a single UDP‐glucosyltransferase were found to catalyze the reactions required for biosynthesis of all five barley HNGs. Two of the CYP71 enzymes needed to be co‐expressed for the last hydroxylation step in sutherlandin synthesis to proceed. This observation, together with the constant ratio between the different HNGs, suggested that HNG synthesis in barley is organized within a single multi‐enzyme complex. 相似文献
6.
Influence of ligand binding on structure and thermostability of human α1‐acid glycoprotein 下载免费PDF全文
Vladimír Kopecký Jr. Rüdiger Ettrich Tomáš Pazderka Kateřina Hofbauerová David Řeha Vladimír Baumruk 《Journal of molecular recognition : JMR》2016,29(2):70-79
Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1‐acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the β‐barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are ?18.2, ?14.5, and ?11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10–95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α‐helical content is observed that coincides with an increase in β‐sheet content. Above 45 °C, also β‐strands tend to unfold, and the observed decrease in β‐sheet coincides with an increase of β‐turns accompanied by a conformational shift of the nearby disulfide bridge from high‐energy trans‐gauche‐trans to more relaxed gauche‐gauche‐trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the β‐sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein–ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone‐like function of AGP. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
7.
Xiaohui Cang Linlin Yang Jing Yang Cheng Luo Mingyue Zheng Kunqian Yu Huaiyu Yang Hualiang Jiang 《Proteins》2014,82(5):760-770
Two 8‐µs all‐atom molecular dynamics simulations have been performed on the two highly homologous G protein‐coupled receptor (GPCR) subtypes, β1‐ and β2‐adrenergic receptors, which were embedded in a lipid bilayer with randomly dispersed cholesterol molecules. During the simulations, cholesterol molecules accumulate to different surface regions of the two receptors, suggesting the subtype specificity of cholesterol–β‐adrenergic receptor interaction and providing some clues to the physiological difference of the two subtypes. Meanwhile, comparison between the two receptors in interacting with cholesterols shed some new light on general determinants of cholesterol binding to GPCRs. Our results indicate that although the concave surface, charged residues and aromatic residues are important, neither of these stabilizing factors is indispensable for a cholesterol interaction site. Different combinations of these factors lead to the diversified binding modes of cholesterol binding to the receptors. Our long‐time simulations, for the first time, revealed the pathway of a cholesterol molecule entering the consensus cholesterol motif (CCM) site, and the binding process of cholesterol to CCM is accompanied by a side chain flipping of the conserved Trp4.50. Moreover, the simulation results suggest that the I‐/V‐/L‐rich region on the extracellular parts of helix 6 might be an alternatively conserved cholesterol‐binding site for the class‐A GPCRs. Proteins 2014; 82:760–770. © 2013 Wiley Periodicals, Inc. 相似文献
8.
Chemical investigation of the glandular trichome exudate of Erodium pelargoniflorum (Geraniaceae) led to the isolation of two dodecyl disaccharide derivatives, named pelargoside A1 and pelargoside B1 ( 1 and 2 , resp.). The structures of 1 and 2 were determined as dodecyl 4‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐acetyl‐β‐D ‐fucopyranoside and dodecyl 3,4‐di‐O‐acetyl‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐acetyl‐β‐D ‐fucopyranoside, respectively, by spectroscopic studies, including 2D‐NMR, and chemical transformations. In addition, undecyl, tridecyl, and tetradecyl homologs of 1 and 2 , named pelargosides A2–A4 and pelargosides B2–B4, were also characterized as minor constituents of the exudate. 相似文献
9.
sp2‐Iminosugar α‐glucosidase inhibitor 1‐C‐octyl‐2‐oxa‐3‐oxocastanospermine specifically affected breast cancer cell migration through Stim1, β1‐integrin,and FAK signaling pathways 下载免费PDF全文
Nahla Gueder Ghada Allan Marie‐Sophie Telliez Frédéric Hague José M. Fernandez Elena M. Sanchez‐Fernandez Carmen Ortiz‐Mellet Ahmed Ahidouch Halima Ouadid‐Ahidouch 《Journal of cellular physiology》2017,232(12):3631-3640
10.
Glucoamylase is an important industrial glucohydrolase with a large specificity range. To investigate its interaction with the monosaccharides D-glucose, D-mannose, and D-galactose and with the substrate analogues 1-deoxynojirimycin, D-glucono-1,5-lactone, and methyl αacarviosinide, MM3(92)-optimized structures were docked into its active site using AutoDock 2.1. The results were compared to structures of glucoamylase complexes obtained by protein crystallography. Charged forms of some substrate analogues were also docked to assess the degree of protonation possessed by glucoamylase inhibitors. Many forms of methyl αa-carviosinide were conformationally mapped by using MM3(92), characterizing the conformational pH dependence found for the acarbose family of glucosidase inhibitors. Their significant conformers, representing the most common states of the inhibitor, were used as initial structures for docking. This constitutes a new approach for the exploration of binding modes of carbohydrate chains. Docking results differ slightly from x-ray crystallographic data, the difference being of the order of the crystallographic error. The estimated energetic interactions, even though agreeing in some cases with experimental binding kinetics, are only qualitative due to the large approximations made by AudoDock force field. © 1997 Wiley-Liss, Inc. 相似文献
11.
A fluorescence method was established for a α‐glucosidase activity assay and inhibitor screening based on β‐cyclodextrin‐coated quantum dots. p‐Nitrophenol, the hydrolysis product of the α‐glucosidase reaction, could quench the fluorescence of β‐cyclodextrin‐coated quantum dots via an electron transfer process, leading to fluorescence turn‐off, whereas the fluorescence of the system turned on in the presence of α‐glucosidase inhibitors. Taking advantage of the excellent properties of quantum dots, this method provided a very simple, rapid and sensitive screening method for α‐glucosidase inhibitors. Two α‐glucosidase inhibitors, 2,4,6‐tribromophenol and acarbose, were used to evaluate the feasibility of this screening model, and IC50 values of 24 μM and 0.55 mM were obtained respectively, which were lower than those previously reported. The method may have potential application in screening α‐glucosidase inhibitors. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
Crystal structure of a novel two domain GH78 family α‐rhamnosidase from Klebsiella oxytoca with rhamnose bound 下载免费PDF全文
Michael J. Paterson Martin Rejzek Anne‐Laure Chauvin David M. Lawson Robert A. Field 《Proteins》2015,83(9):1742-1749
The crystal structure of the GH78 family α‐rhamnosidase from Klebsiella oxytoca (KoRha) has been determined at 2.7 Å resolution with rhamnose bound in the active site of the catalytic domain. Curiously, the putative catalytic acid, Asp 222, is preceded by an unusual non‐proline cis‐peptide bond which helps to project the carboxyl group into the active centre. This KoRha homodimeric structure is significantly smaller than those of the other previously determined GH78 structures. Nevertheless, the enzyme displays α‐rhamnosidase activity when assayed in vitro, suggesting that the additional structural domains found in the related enzymes are dispensible for function. Proteins 2015; 83:1742–1749. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. 相似文献
13.
14.
15.
The inhibition of carbohydrate‐hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A ( 1 ), a bis‐labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl ., was identified as an active dual inhibitor for α‐amylase (IC50=114.80 μm ) and α‐glucosidase (IC50=153.87 μm ). This is the first report on the dual α‐amylase and α‐glucosidase inhibitory activities of a bis‐labdanic diterpene. The Lineweaver‐Burk plots of compound 1 indicate that it is a mixed‐type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non‐active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes. 相似文献
16.
Melanie Tay Su Liu Y. Adam Yuan 《Protein science : a publication of the Protein Society》2015,24(2):236-245
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)‐CRISPR‐associated (Cas) defense system is the only adaptive and inheritable immunity found in prokaryotes. The immunity is achieved through a multistep process of adaptation, expression, and interference. In the Type I‐E system, interference is mediated by the CRISPR‐associated complex for antiviral defense (Cascade), which recognizes invading double‐stranded DNA (dsDNA) through the protospacer adjacent motif (PAM) by one of the Cascade components, Cse1. Here, we report the crystal structure of Thermobifida fusca Cse1 at 3.3 Å resolution. T. fusca Cse1 reveals the chair‐like two‐domain architecture with a well‐defined flexible loop, L1, located at the larger N‐terminal domain, which was not observed in previous structures of the single Cse1 protein. Structure‐based mutagenesis analysis demonstrates that the well‐defined flexible loop and a partially conserved structural motif ([FW]‐X‐[TH]) are involved in PAM binding and recognition, respectively. Moreover, structural docking of T. fusca Cse1 into Escherichia coli Cascade cryoelectron microscopy maps, coupled with structural comparison, reveals a conserved positive patch that is contiguous with Cse2 in the Cascade complex and adjacent to the Cas3 binding site, suggesting its role in R‐loop formation/stabilization and the recruitment of Cas3 for target cleavage. Consistent with the structural observation, the introduction of alanine mutations at this positive patch abolished DNA binding activity by Cse1. Taken together, these results suggest that Cse1 is a critical Cascade component involved in Cascade assembly, dsDNA target recognition, R‐loop formation, and Cas3 recruitment for target cleavage. 相似文献
17.
The wheat bug Eurygaster maura (Hemiptera: Scutelleridae) is a potential pest of wheat and barley in Iran and other countries. Two major digestive enzymes of this insect, α‐d ‐glucosidase and β‐d ‐glucosidase, have been investigated. The midgut has four distinct regions including the first ventriculus (V1), second ventriculus (V2), third ventriculus (V3) and fourth ventriculus (V4). The study showed that the first three regions of the wheat bug midgut were acidic (pH 5.5–6), the fourth region of the midgut and hindgut pH were slightly acidic (pH 6.5–6.9) and the salivary gland (labial gland) pH was determined to be somewhat acidic (pH 5–5.5). Enzyme assay showed that α‐ and β‐glucosidase activity is present in both midgut and salivary glands of adult E. maura. The specific activities of midgut α‐ and β‐glucosidase were 11.2 and 10.8 mU/mg protein, respectively. The specific activities of these enzymes in salivary glands were 3.06 and 2.73 mU/mg protein, respectively. Optimum temperature and pH values for glucosidases were determined to be 30–35°C and 5, respectively. Glucosidases of the midgut were more stable than salivary glucosidases at 35°C. Evaluating enzymatic kinetic parameters showed that glucosidases of the midgut had more affinity as well as more velocity than that of salivary glands. 相似文献
18.
Sergei E. Permyakov Tatyana I. Khokhlova Vladimir N. Uversky Eugene A. Permyakov 《Proteins》2010,78(12):2609-2624
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
19.
Linda Cerofolini Jussara Amato Valentina Borsi Bruno Pagano Antonio Randazzo Marco Fragai 《Journal of molecular recognition : JMR》2015,28(6):376-384
DNA‐minor‐groove‐binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA‐interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B‐DNA and G‐quadruplex‐forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100β, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)‐loaded S100β reinforces the idea that some biological activities of the DNA‐minor‐groove‐binding ligands arise from the binding to cellular proteins. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc. 相似文献