首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以来自“掖单4号”的玉米果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶(F2KP)基因cDNA片段(AF007582)为基础,运用RT-PCR和RACE技术,从“紫玉糯1号”中获得了1个2469bp的玉米F2KP基因cDNA克隆,命名为mF2KP,GenBank登录号为AF334143。该cDNA包含1个2226bp的开放阅读框,编码741个氨基酸。序列分析表明,两个玉米品种的F2KP基因存在一定差异,mF2KP基因的3′端非编码区比AF007582序列短38bp;在mF2KP的1592、1593和1605位置上,分别比AF007582序列多出1个碱基,导致阅读框在一个小范围内发生了移位,North-ern杂交表明,不同玉米组织中mF2KP的表达差异明显。在茎中mF2KP的表达水平比叶片,苞叶以及雄花序中的表达水平低,但比未成熟种子中的表达水平高,在未成熟种子中,仅能检测到很弱的mF2KP基因表达。  相似文献   

2.
Distinct 6-phosphofructo-2-kinase (PFK-2)/fructose 2,6-bisphosphatase (FBPase-2) cDNAs were cloned from bovine heart, showing that PFK-2/FBPase-2 gene B, which contains 16 exons, codes for at least five mRNAs. Three of them (B1, B2, B4) could encode the 58,000-Mr isozyme. In B2 mRNA, exon 15 encodes four more residues than in Bl. In B4 mRNA, exon 15 encodes six more residues than in B1, butexon 16 (20 residues) is missing. B3 mRNA corresponds to the 54,000-Mr isozyme. It lacks exon 15 and also differs from the other mRNAs in the 5' noncoding region. B5 mRNA encodes a truncated form. When expressed in E. coli, the recombinant isoforms corresponding to all these mRNAs except B5 exhibited PFK-2 activity.  相似文献   

3.
Efforts toward improving the predictiveness in tier-based approaches to virtual screening (VS) have mainly focused on protein kinases. Despite their significance as drug targets, small molecule kinases have been rarely tested with these approaches. In this paper, we investigate the efficacy of a pharmacophore screening-combined structure-based docking approach on the human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, an emerging target for cancer chemotherapy. Six out of a total 1364 compounds from NCI’s Diversity Set II were selected as true actives via throughput screening. Using a database constructed from these compounds, five programs were tested for structure-based docking (SBD) performance, the MOE of which showed the highest enrichments and second highest screening rates. Separately, using the same database, pharmacophore screening was performed, reducing 1364 compounds to 287 with no loss in true actives, yielding an enrichment of 4.75. When SBD was retested with the pharmacophore filtered database, 4 of the 5 SBD programs showed significant improvements to enrichment rates at only 2.5% of the database, with a 7-fold decrease in an average VS time. Our results altogether suggest that combinatorial approaches of VS technologies are easily applicable to small molecule kinases and, moreover, that such methods can decrease the variability associated with single-method SBD approaches.  相似文献   

4.
To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3AMPPCPfructose-6-phosphate and PFKFB3ADPphosphoenolpyruvate complexes were determined to 2.7 A and 2.25 A resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the gamma-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the beta,gamma-phosphate bridge oxygen atom, the gamma-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and gamma-phosphorus allows the gamma-phosphate oxygen atoms to serve as a general base catalyst to induce an "associative" phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first.  相似文献   

5.
6.
It is well established that cancer cells depend upon aerobic glycolysis to provide the energy they need to survive and proliferate. However, anti‐glycolytic agents have yielded few positive results in human patients, in part due to dose‐limiting side effects. Here, we discovered the unexpected anti‐cancer efficacy of Polydatin (PD) combined with 2‐deoxy‐D‐glucose (2‐DG), which is a compound that inhibits glycolysis. We demonstrated in two breast cell lines (MCF‐7 and 4T1) that combination treatment with PD and 2‐DG induced cell apoptosis and inhibited cell proliferation, migration and invasion. Furthermore, we determined the mechanism of PD in synergy with 2‐DG, which decreased the intracellular reactive oxygen (ROS) levels and suppressed the PI3K/AKT pathway. In addition, the combined treatment inhibited the glycolytic phenotype through reducing the expression of HK2. HK2 deletion in breast cancer cells thus improved the anti‐cancer activity of 2‐DG. The combination treatment also resulted in significant tumour regression in the absence of significant morphologic changes in the heart, liver or kidney in vivo. In summary, our study demonstrates that PD synergised with 2‐DG to enhance its anti‐cancer efficacy by inhibiting the ROS/PI3K/AKT/HIF‐1α/HK2 signalling axis, providing a potential anti‐cancer strategy.  相似文献   

7.
The force driving the conversion from the acyl intermediate to the tetrahedral intermediate in the deacylation reaction of serine proteases remains unclear. The crystal structure of 6‐guanidinohexanoyl trypsin was determined at pH 7.0, near the optimum reaction pH, at 1.94 Å resolution. In this structure, three water molecules are observed around the catalytic site. One acts as a nucleophile to attack the acyl carbonyl carbon while the other two waters fix the position of the catalytic water through a hydrogen bond. When the acyl carbonyl oxygen oscillates thermally, the water assumes an appropriate angle to catalyze the deacylation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
[Ni(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 1 ) and [Co(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 2 ) are synthesized and characterized by elemental analysis, FT‐IR spectra, magnetic susceptibility, and thermal analysis. In addition, the crystal structure of Ni(II) complex is presented. Both complexes show distorted octahedral geometry. In 1 and 2, metal ions are coordinated by two oxygen atoms of salicylic residue and two nitrogen atoms of maleic amide residue from two ligands, and two oxygen atoms from two water molecules. In this paper, both compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I, and II, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compounds 1 and 2 had Ki values of 18.36 ± 4.38 and 26.61 ± 7.54 nM against hCA I and 13.81 ± 3.02 and 29.56 ± 6.52 nM against hCA II, respectively. On the other hand, their Ki values were found to be 487.45 ± 54.18 and 453.81 ± 118.61 nM against AChE and 199.21 ± 50.35 and 409.41 ± 6.86 nM against BChE, respectively.  相似文献   

10.
11.
The canonical Wnt/β‐catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co‐receptor for Wnt/β‐catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3β‐mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane‐anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6‐ICD) can activate the Wnt/β‐catenin pathway in a β‐catenin and TCF/LEF‐1 dependent manner, as well as interact with and attenuate GSK3β activity. However, it is unknown if the ability of LRP6‐ICD to attenuate GSK3β activity and modulate activation of the Wnt/β‐catenin pathway requires phosphorylation of the LRP6‐ICD PPP(S/T)P motifs, in a manner similar to the membrane‐anchored LRP6 intracellular domain. Here we provide evidence that the LRP6‐ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3β to stabilize endogenous cytosolic β‐catenin resulting in activation of TCF/LEF‐1 and the Wnt/β‐catenin pathway. LRP6‐ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3β activity in vitro, and both constructs inhibited the in situ GSK3β‐mediated phosphorylation of β‐catenin and tau to the same extent. These data indicate that the LRP6‐ICD attenuates GSK3β activity similar to other GSK3β binding proteins, and is not a result of it being a GSK3β substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6‐ICD may be distinct from membrane‐anchored LRP6, and that release of the LRP6‐ICD may provide a complimentary signaling cascade capable of modulating Wnt‐dependent gene expression. J. Cell. Biochem. 108: 886–895, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Two complexes of Tb3+, Gd3+/Tb3+ and one heteronuclear crystal Gd3+/Tb3+ with phenoxyacetic acid (HPOA) and 2,4,6‐tris‐(2‐pyridyl)‐s–triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis‐differential scanning calorimetry (TG‐DSC) analysis show that the two complexes are Tb2(POA)6(TPTZ)2·6H2O and TbGd(POA)6(TPTZ)2·6H2O, respectively. The crystal structure of TbGd(POA)6(TPTZ)2·2CH3OH was determined using single‐crystal X‐ray diffraction. The monocrystal belongs to the triclinic system with the P‐1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd3+/Tb3+ complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb3+ ions, and intramolecular energy transfer from the ligands coordinated with Gd3+ ions to Tb3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The myristoylated alanine-rich C kinase substrate (MARCKS) is a major protein kinase C (PKC) substrate in brain that binds the inner surface of the plasma membrane, calmodulin, and cross-links filamentous actin, all in a PKC phosphorylation-reversible manner. MARCKS has been implicated in hippocampal-dependent learning and long-term potentiation (LTP). Previous studies have shown DBA/2 mice to exhibit poor spatial/contextual learning, impaired hippocampal LTP, and hippocampal mossy fiber hypoplasia, as well as reduced hippocampal PKC activity and expression relative to C57BL/6 mice. In the present study, we assessed the expression (mRNA and protein) and subcellular distribution (membrane and cytolsol) of MARCKS in the hippocampus and frontal cortex of C57BL/6 and DBA/2 mice using quantitative western blotting. In the hippocampus, total MARCKS mRNA and protein levels in C57BL/6J mice were significantly lower ( approximately 45%) compared with DBA/2J mice, and MARCKS protein was observed predominantly in the cytosolic fraction. MARCKS expression in frontal cortex did not differ significantly between strains. To examine the dynamic regulation of MARCKS subcellular distribution, mice from each strain were subjected to 60 min restraint stress and MARCKS subcellular distribution was determined 24 h later. Restraint stress resulted in a significant reduction in membrane MARCKS expression in C57BL/6J hippocampus but not in the DBA/2J hippocampus despite similar stress-induced increases in serum corticosterone. Restraint stress did not affect cytosolic or total MARCKS levels in either strain. Similarly, restraint stress (30 min) in rats also induced a significant reduction in membrane MARCKS, but not total or cytosolic MARCKS, in the hippocampus but not in frontal cortex. In rats, chronic lithium treatment prior to stress exposure reduced hippocampal MARCKS expression but did not affect the stress-induced reduction in membrane MARCKS. Collectively these data demonstrate higher resting levels of MARCKS in the hippocampus of DBA/2J mice compared to C57BL/6J mice, and that acute stress leads to a long-term reduction in membrane MARCKS expression in C57BL/6J mice and rats but not in DBA/2J mice. These strain differences in hippocampal MARCKS expression and subcellular translocation following stress may contribute to the differences in behaviors requiring hippocampal plasticity observed between these strains.  相似文献   

15.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel ligand‐binding site with functional implications has been identified in phospholipase A2 (PLA2). The binding of non‐steroidal anti‐inflammatory agent indomethacin at this site blocks both catalytic and anti‐coagulant actions of PLA2. A group IIA PLA2 has been isolated from Daboia russelli pulchella (Russell's viper) which is enzymatically active as well as induces a strong anti‐coagulant action. The binding studies have shown that indomethacin reduces the effects of both anti‐coagulant and pro‐inflammatory actions of PLA2. A group IIA PLA2 was co‐crystallized with indomethacin and the structure of the complex has been determined at 1.4 Å resolution. The structure determination has revealed the presence of an indomethacin molecule in the structure of PLA2 at a site which is distinct from the conventional substrate‐binding site. One of the carboxylic group oxygen atoms of indomethacin interacts with Asp 49 and His 48 through the catalytically important water molecule OW 18 while the second carboxylic oxygen atom forms an ionic interaction with the side chain of Lys 69. It is well known that the residues, His 48 and Asp 49 are essential for catalysis while Lys 69 is a part of the anti‐coagulant loop (residues, 54–77). Indomethacin binds in such a manner that it blocks the access to both, it works as a dual inhibitor for catalytic and anti‐coagulant actions of PLA2. This new binding site in PLA2 has been observed for the first time and indomethacin is the first compound that has been shown to bind at this novel site resulting in the prevention of anti‐coagulation and inflammation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Parathyroid hormone (PTH) regulation of mitogen‐activated protein kinases (MAPK) ERK1/2 contributes to PTH regulation of osteoblast growth and apoptosis. We investigated the mechanisms by which PTH inhibits ERK1/2 activity in osteoblastic UMR 106‐01 cells. Treatment with PTH significantly inhibited phosphorylated ERK1/2 between 5 and 60 min. Transient transfection of cells with a cDNA encoding MAPK phosphatase‐1 (MKP‐1) resulted in 30–40% inhibition of pERK1/2; however MKP‐1 protein levels were only significantly stimulated by PTH after 30 mins, suggesting another mechanism for the early phase of pERK1/2 inhibition. The active upstream kinase c‐Raf phosphorylation at serine 338 (ser338) was significantly inhibited by PTH treatment within 5 min and transfection of the cells with constitutively‐active c‐Raf blocked PTH inhibition of pERK1/2. Inhibition of pERK1/2 and phosphor‐c‐Raf were seen when cells were treated with PTH(1‐34) or PTH(1‐31) analogues that stimulate cAMP, but not with PTH(3‐34), PTH(7‐34) or PTH(18‐48) that do not stimulate cAMP. Stimulation of the cells with forskolin or 8BrcAMP also inhibited pERK1/2 and c‐Raf.p338. Our results suggest that rapid PTH inhibition of ERK1/2 activity is mediated by PKA dependent inhibition of c‐Raf activity and that stimulation of MKP‐1 may contribute to maintaining pERK1/2 inhibition over prolonged time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Lens formation in mouse is critically dependent on proper development of the retinal neuroectoderm that is located close beneath the head surface ectoderm. Signaling from the prospective retina triggers lens‐specific gene expression in the surface‐ectoderm. Supression of canonical Wnt/β‐catenin signaling in the surface ectoderm is one of the prerequisites for lens development because, as we show here, ectopic Wnt activation in the retina and lens abrogates lens formation. Wnt inhibiton is mediated by signals coming from the retina but its exact mechanism is unknown. We show that Pax6 directly controls expression of several Wnt inhibitors such as Sfrp1, Sfrp2, and Dkk1 in the presumptive lens. In accordance, absence of Pax6 function leads to aberrant canonical Wnt activity in the presumptive lens that subsequently impairs lens development. Thus Pax6 is required for down‐regulation of canonical Wnt signaling in the presumptive lens ectoderm. genesis 48:86–95, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Karle IL  Urry DW 《Biopolymers》2005,77(4):198-204
Tropoelastin is a complex polymeric protein composed primarily of repeating segments of Val-Pro-Gly-Gly, Val-Pro-Gly-Val-Gly, and Ala-Pro-Gly-Val-Gly-Val that occurs in connective tissue and arteries. It has rubber-like extensible properties. A synthetic cyclic dodecapeptide, with a double repeat of the hexapeptide sequence, has been shown to undergo a reversible inverse temperature transition; that is, crystals grow at 60 degrees C and dissolve in the mother liquor upon cooling. An x-ray crystal structure analysis established that the cyclic backbone formed an elongated loop with a Pro-Gly, type II beta turn at both ends. Six internal cross strand NH...OC hydrogen bonds form between six NH donors and four O=C acceptors where two of the carbonyl O atoms are bifurcated acceptors. As a result, the molecule is pulled up into a corrugated profile. The corrugated loops form extended beta-sheets by additional intermolecular hydrogen bonds. An analysis of the dome region in a corrugated sheet suggests a reversible mechanism for extending and contracting the length of the whole molecule, akin to the motion of opening and closing an umbrella, caused by the motion of a water molecule with its associated hydrogen bonds acting as spokes. Crystal parameters: C44H72N12O12.3H2O, sp. gr. P2(1)2(1)2(1), a = 9.212 angstroms, b = 19.055 angstroms, c = 32.247 angstroms, d = 1.157 g/cm3.  相似文献   

20.
Lactoperoxidase (LPO) belongs to mammalian heme peroxidase superfamily, which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO), and thyroid peroxidase (TPO). LPO catalyzes the oxidation of a number of substrates including thiocyanate while TPO catalyzes the biosynthesis of thyroid hormones. LPO is also been shown to catalyze the biosynthesis of thyroid hormones indicating similar functional and structural properties. The binding studies showed that 2‐mercaptoimidazole (MZY) bound to LPO with a dissociation constant of 0.63 µM. The inhibition studies showed that the value of IC50 was 17 µM. The crystal structure of the complex of LPO with MZY showed that MZY bound to LPO in the substrate‐binding site on the distal heme side. MZY was oriented in the substrate‐binding site in such a way that the sulfur atom is at a distance of 2.58 Å from the heme iron. Previously, a similar compound, 3‐amino‐1,2,4‐triazole (amitrole) was also shown to bind to LPO in the substrate‐binding site on the distal heme side. The amino nitrogen atom of amitrole occupied the same position as that of sulfur atom in the present structure indicating a similar mode of binding. Recently, the structure of the complex of LPO with a potent antithyroid drug, 1‐methylimidazole‐2‐thiol (methimazole, MMZ) was also determined. It showed that MMZ bound to LPO in the substrate‐binding site on the distal heme side with 2 orientations. The position of methyl group was same in the 2 orientations while the positions of sulfur atom differed indicating a higher preference for a methyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号