首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In keeping with recent efforts to generate compounds for antibiotic and microbicide development, we focused on the creation of non‐natural organo‐peptide hybrids of antimicrobial peptide amides (KLK(L)nKLK‐NH2) derived from sapecin B and a self‐assembling oligoglycine organo‐peptide bolaphile containing an ω‐amino fatty acid residue. The hybrid organo‐peptide bolaphiles with two cationic KLK tripeptide motifs linked with an ω‐amino acid residue (penta‐, octa‐ or undecamethylene chain) maintained the self‐assembling properties of the root oligoglycine bolaphile. Electron microscopy clearly revealed complex supramolecular architectures for both sapecin B‐derived peptides and the hybrid analogues. FT‐IR spectroscopy indicated that the supramolecular structures were composed primarily of β‐sheets. CD revealed that the hybrid bolaphiles did not share the same secondary structures as the sapecin B peptides in solution. However, although secondary structures of antimicrobial peptides are central in the activity, the organo‐peptide bolaphiles also retained the potent antimicrobial activity of the leader sapecin B‐derived peptide against both Gram‐positive and Gram‐negative bacteria. In general, the hybrids were more selective than the sapecin B peptides, as they displayed little or no appreciable haemolytic activity. The results obtained herald a new approach for the design of purpose‐built hybrid organo‐peptide bolaphiles. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Amyloid‐like peptides are an ideal model for the mechanistic study of amyloidosis, which may lead to many human diseases, such as Alzheimer disease. This study reports a strong second harmonic generation (SHG) effect of amyloid‐like peptides, having a signal equivalent to or even higher than those of endogenous collagen fibers. Several amyloid‐like peptides (both synthetic and natural) were examined under SHG microscopy and shown they are SHG‐active. These peptides can also be observed inside cells (in vitro). This interesting property can make these amyloid‐like peptides second harmonic probes for bioimaging applications. Furthermore, SHG microscopy can provide a simple and label‐free approach to detect amyloidosis. Lattice corneal dystrophy was chosen as a model disease of amyloidosis. Morphological difference between normal and diseased human corneal biopsy samples can be easily recognized, proving that SHG can be a useful tool for disease diagnosis.  相似文献   

3.
A novel heptapeptide comprising Ile‐Gln‐Ser‐Pro‐His‐Phe‐Phe (IQSPHFF) identified and found to undergo self‐assembly into microparticles in solution. To understand the effects of ultraviolet (UV) irradiation on the self‐assembly process, IQSPHFF solutions were exposed to the UV light of 365 nm at room temperature. This exposure was found to have a profound effect on the morphology of the self‐assembled aggregates, converting the microparticles to nanorod shapes. Circular dichroism and FTIR studies indicated distinct structural differences in the arrangements of the peptide moieties before and after UV irradiation. However, Mass spectrum analysis and high performance liquid chromatography of the peptide molecules before and after UV irradiation demonstrated that the chemical structure of IQSPHFF was not changed. UV–visible spectroscopy and fluorescence spectroscopy studies showed that the absorption peak both increased after UV irradiation. Overall, our data show that the heptapeptide with UV‐responsive properties. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 272–278, 2014.  相似文献   

4.
Oligopeptides are well‐known to self‐assemble into a wide array of nanostructures including β‐sheet‐rich fibers that when present above a critical concentration become entangled and form self‐supporting hydrogels. The length, quantity, and interactions between fibers influence the mechanical properties of the hydrogel formed and this is typically achieved by varying the peptide concentration, pH, ionic strength, or the addition of a second species or chemical cross‐linking agent. Here, we outline an alternative, facile route to control the mechanical properties of the self‐assembling octa‐peptide, FEFEFKFK (FEKII); simply doping with controlled quantities of its double length peptide, FEFEFKFK‐GG‐FKFKFEFE (FEKII18). The structure and properties of a series of samples were studied here (0–100 M% of FEKII18) using Fourier transform infrared, small angle X‐ray scattering, transmission electron microscopy, and oscillatory rheology. All samples were found to contain elongated, flexible fibers and all mixed samples contained Y‐shaped branch points and parallel fibers which is attributed to the longer peptide self‐assembling within two fibers, thus creating a cross‐link in the network structure. Such behavior was reflected in an increase in the elasticity of the mixed samples with increasing quantity of double peptide. Interestingly the elastic modulus increased up to 30 times the pure FEKII value simply by adding 28 M% of FEKII18. These observations provide an easy, off‐the‐shelf method for an end‐user to control the cross‐linked network structure of the peptide hydrogel, and consequently strength of the hydrogel simply by physically mixing pre‐determined quantities of two similar peptide molecules. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 669–680, 2014.  相似文献   

5.
The design of proteins that self-assemble into well-defined, higher order structures is an important goal that has potential applications in synthetic biology, materials science, and medicine. We previously designed a two-component protein system, designated A-(+) and A-(−), in which self-assembly is mediated by complementary electrostatic interactions between two coiled-coil sequences appended to the C-terminus of a homotrimeric enzyme with C3 symmetry. The coiled-coil sequences are attached through a short, flexible spacer sequence providing the system with a high degree of conformational flexibility. Thus, the primary constraint guiding which structures the system may assemble into is the symmetry of the protein building block. We have now characterized the properties of the self-assembling system as a whole using native gel electrophoresis and analytical ultracentrifugation (AUC) and the properties of individual assemblies using cryo-electron microscopy (EM). We show that upon mixing, A-(+) and A-(−) form only six different complexes in significant concentrations. The three predominant complexes have hydrodynamic properties consistent with the formation of heterodimeric, tetrahedral, and octahedral protein cages. Cryo-EM of size-fractionated material shows that A-(+) and A-(−) form spherical particles with diameters appropriate for tetrahedral or octahedral protein cages. The particles varied in diameter in an almost continuous manner suggesting that their structures are extremely flexible.  相似文献   

6.
Outer membrane protein TolC serves as an exit duct for exporting substances out of cell. The occluded periplasmic entrance of TolC is required to open for substrate transport, although the opening mechanism remains elusive. In this study, systematic molecular dynamics (MD) simulations for wild type TolC and six mutants were performed to explore the conformational dynamics of TolC. The periplasmic gate was shown to sample multiple conformational states with various degrees of gating opening. The gate opening was facilitated by all mutations except Y362F, which adopts an even more closed state than wild type TolC. The interprotomer salt‐bridge R367–D153 is turned out to be crucial for periplasmic gate opening. The mutations that disrupt the interactions at the periplasmic tip may affect the stability of the trimeric assembly of TolC. Structural asymmetry of the periplasmic gate was observed to be opening size dependent. Asymmetric conformations are found in moderately opening states, while the most and the least opening states are often more symmetric. Finally, it is shown that lowering pH can remarkably stabilize the closed state of the periplasmic gate. Proteins 2014; 82:2169–2179. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Peptide‐oligonucleotide conjugates (POCs) are interesting molecules as they covalently combine 2 of the most important biomacromolecules. Sometimes, the synthesis of POCs involves unexpected difficulties; however, POCs with self‐assembling propensity are even harder to synthesize and purify. Here, we show that solid‐phase peptide fragment condensation combined with thiol‐maleimide or copper‐catalyzed azide‐alkyne cycloaddition click chemistries is useful for the syntheses of self‐assembling POCs. We describe guidelines for the selection of reactive functional groups and their placement during the conjugation reaction and consider the cost‐effectiveness of the reaction. Purification is another important challenge during the preparation of POCs. Our results show that polyacrylamide gel electrophoresis under denaturing conditions is most suitable to recover a high yield of self‐assembling POCs. This report provides the first comprehensive study of the preparation of self‐assembling POCs, which will lay a foundation for the development of elegant and sophisticated molecular assemblies.  相似文献   

8.
It is well known that GnRH analogs can self‐assemble into amyloid fibrils and that the duration of action of GnRH analogs depends on the ability of the amyloid to slowly release active peptides. The aim of this study was to investigate the influence of the amino acid residues at position 7 of GnRH analogues on peptide self‐assembly. It was found that the dominant shape of the nanostructure can be changed when the structures of the residues at position 7 differ significantly from that of leucine in Degarelix. When the backbone length was extended (peptide 9), or the side chain of the residue at position 7 was replaced by an aromatic ring (peptide 6), or the rotation of the amide bond was restricted (peptide 8), the nanostructure changed from fibrils to vesicles. The results also indicate that the increasing hydrophilicity had little influence on the nanostructure morphology. In addition, a suitable release rate was found to play a more important role for the duration of the peptide action by maintaining the equilibrium between the drug concentration and the persistent release time, while the nanostructure shape was found to exert little influence on the duration of the peptide action. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Peptide‐based hydrogels have gained much interest for biomedical applications as a result of their biocompatibility. Herein, we reported a synthetic pH‐sensitive and calcium‐responsive peptide‐amphiphilic hydrogel. The sequences of the peptide amphiphiles were derived from the repeat‐in‐toxin (RTX) motif. At a certain peptide‐amphiphile concentration, self‐assembly was accompanied by the formation of a rigid, viscoelastic hydrogel at low pH or the presence of calcium ions. Circular dichroism spectra showed that the peptide amphiphiles adopted beta‐sheet structure. Meanwhile, as revealed by transmission electron microscopy, the peptide‐amphiphile self‐assembly was accompanied by the formation of long interconnected nanofibrillar superstructure. Material properties of the resulting peptide‐amphiphile hydrogel were characterized using oscillatory sheer rheology, and the storage modulus (G′) was found to be one order of magnitude higher than the loss modulus (G″), indicating a moderately rigid viscoelastic material. Furthermore, with systematical residue substitution, it was found that the aspartic acid within the repeat‐in‐toxin sequence of peptide amphiphiles was responsible for the pH and calcium selectivity. The environmental responsiveness, secondary structure, morphology, and mechanical nature of the peptide‐amphiphile hydrogel make it a possible material candidate for biomedical and engineering application. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Lipids and proteins in the plasma membrane are laterally heterogeneous and formalised as lipid rafts featuring unique biophysical properties. However, the self‐assembly mechanism of lipid raft cannot be revealed even its physical properties and components were determined in specific physiological processes. In this study, two‐photon generalised polarisation imaging and fluorescence correlation spectroscopy were used to study the fusion of lipid rafts through the membrane phase and the lateral diffusion of lipids in living breast cancer cells. A self‐assembly model of lipid rafts associated with lipid diffusion and membrane phase was proposed to demonstrate the lipid sorting ability of lipid rafts in the plasma membrane. The results showed that the increased proportion of slow subdiffusion of GM1‐binding cholera toxin B‐subunit (CT‐B) was accompanied with an increased liquid‐ordered domain during the β‐estradiol‐induced fusion of lipid rafts. And slow subdiffusion of CT‐B was vanished with the depletion of lipid rafts. Whereas the dialkylindocarbocyanine (DiIC18) diffusion was not specifically regulated by lipid rafts. This study will open up a new insight for uncovering the self‐assembly of lipid rafts in specific pathophysiological processes.  相似文献   

11.
Polybissilsesquioxanes with single‐handed helical morphologies attracted much attention during the last decade, which could be applied as asymmetric catalysts and chiral stationary phases. Herein, a pair of chiral biphenylene‐bridged bissilsesquioxanes were synthesized. They self‐assembled into helical bundles in ethanol, behavior that was confirmed in field emission scanning electron microscopy images. Circular dichroism analysis indicated that the biphenylene groups twisted in a single‐handed fashion. Single‐handed helical polybissilsesquioxane bundles were prepared via polycondensation of the bissilsesquioxanes, using a self‐templating approach. Because of the shrinkage that occurred during polycondensation, the helical pitches of the bundles were shorter than those of their corresponding organic self‐assemblies. The wide‐angle X‐ray diffraction pattern indicated that there were no π–π interactions among the diphenylene groups. The circular dichroism spectra indicated that the chirality was successfully transferred from the bissilsesquioxane self‐assemblies to the polybissilsesquioxane. The polybissilsesquioxanes displayed a capacity for the adsorption of nitrobenzene and had potential application for enantioseparation. Chirality 28:44–48, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
A new self‐assembly platform for the fast and straightforward synthesis of bicontinuous, mesoporous TiO2 films is presented, based on the triblock terpolymer poly(isoprene ‐ b ‐ styrene ‐ b ‐ ethylene oxide). This new materials route allows the co‐assembly of the metal oxide as a fully interconnected minority phase, which results in a highly porous photoanode with strong advantages over the state‐of‐the‐art nanoparticle‐based photoanodes employed in solid‐state dye‐sensitized solar cells. Devices fabricated through this triblock terpolymer route exhibit a high availability of sub‐bandgap states distributed in a narrow and low enough energy band, which maximizes photoinduced charge generation from a state‐of‐the‐art organic dye, C220. As a consequence, the co‐assembled mesoporous metal oxide system outperformed the conventional nanoparticle‐based electrodes fabricated and tested under the same conditions, exhibiting solar power‐conversion efficiencies of over 5%.  相似文献   

13.
Supramolecular systems that respond to the hydrolysis of adenosine phosphates (APs) are attractive for biosensing and to fabricate bioinspired self‐assembled materials. Here, we report on the formation of supramolecular complexes between an achiral guanidinium derivative bearing two pyrene moieties, with each of the three adenosine phosphates: AMP, ADP, and ATP. By combining results from circular dichroism spectroscopy and molecular modeling simulations, we explore the induced chirality, the dynamics of the complexes, and the interactions at play, which altogether provide insights into the supramolecular self‐assembly between APs and the guanidinium‐bispyrene. Finally, we identify the chiroptical signals of interest in mixtures of the guanidinium derivative with the three APs in different proportions. This study constitutes a basis to evolve toward a chiroptical detection of the hydrolysis of APs based on organic supramolecular probes.  相似文献   

14.
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so‐called “inside‐out” mechanism characterized by the membrane‐assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi‐microsecond, all‐atom molecular dynamics simulations carried on the complete transmembrane (TM) and C‐terminal (CT) domains of αIIbβ3 integrin in an explicit lipid‐water environment, and in the presence or absence of the talin‐1 F2 and F3 subdomains. These large‐scale simulations provide unprecedented molecular‐level insights into the talin‐driven inside‐out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid‐water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin‐1. Notably, not only do these simulations give support to a stable left‐handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin‐driven integrin activation. Proteins 2014; 82:3231–3240. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The controllable self‐assembly of nanomaterials remains a great challenge in nanotechnological applications, especially for the hierarchical structure with high complexity. Herein, by taking the advantage of highly dispersed metal nodes and mild thermal stability of metal‐organic frameworks (MOFs), the self‐assembly of nanoparticles is directed from MOFs to construct CuO hierarchical structures, which have an inherited octahedral framework consisting of the microspheres, nanowires, and polyhedrons, respectively. Unlike the conventional self‐assembly in a solution media (such as solvent and molten solid), the assembly in this work is the first demonstration through a solution‐free approach. Moreover, compared to the general MOF‐derived CuO octahedron, the assembled hierarchical CuO structure exhibits much enhanced catalytic activity in CO oxidation thanks to the exposure of more active sites during the assembly.  相似文献   

16.
17.
Saurav Mallik  Sudip Kundu 《Proteins》2017,85(7):1183-1189
Is the order in which biomolecular subunits self‐assemble into functional macromolecular complexes imprinted in their sequence‐space? Here, we demonstrate that the temporal order of macromolecular complex self‐assembly can be efficiently captured using the landscape of residue‐level coevolutionary constraints. This predictive power of coevolutionary constraints is irrespective of the structural, functional, and phylogenetic classification of the complex and of the stoichiometry and quaternary arrangement of the constituent monomers. Combining this result with a number of structural attributes estimated from the crystal structure data, we find indications that stronger coevolutionary constraints at interfaces formed early in the assembly hierarchy probably promotes coordinated fixation of mutations that leads to high‐affinity binding with higher surface area, increased surface complementarity and elevated number of molecular contacts, compared to those that form late in the assembly. Proteins 2017; 85:1183–1189. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
19.
Replica exchange molecular dynamics (RexMD) simulations are frequently used for studying structure formation and dynamics of peptides and proteins. A significant drawback of standard temperature RexMD is, however, the rapid increase of the replica number with increasing system size to cover a desired temperature range. A recently developed Hamiltonian RexMD method has been used to study folding of the Trp‐cage protein. It employs a biasing potential that lowers the backbone dihedral barriers and promotes peptide backbone transitions along the replica coordinate. In two independent applications of the biasing potential RexMD method including explicit solvent and starting from a completely unfolded structure the formation of near‐native conformations was observed after 30–40 ns simulation time. The conformation representing the most populated cluster at the final simulation stage had a backbone root mean square deviation of ~1.3 Å from the experimental structure. This was achieved with a very modest number of five replicas making it well suited for peptide and protein folding and refinement studies including explicit solvent. In contrast, during five independent continuous 70 ns molecular dynamics simulations formation of collapsed states but no near native structure formation was observed. The simulations predict a largely collapsed state with a significant helical propensity for the helical domain of the Trp‐cage protein already in the unfolded state. Hydrogen bonded bridging water molecules were identified that could play an active role by stabilizing the arrangement of the helical domain with respect to the rest of the chain already in intermediate states of the protein. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Nowak M 《Proteins》2004,55(1):11-21
AL amyloidosis and LCDD are pathological conditions caused by extracellural deposition of monoclonal Ig light chain variable domains. In the former case, deposits have a form of amyloid fibrils, in the latter, amorphous aggregates. 1REI kappa light chain variable domain and its two point mutants, R61N and D82I, were chosen for the analysis in this work. Wild 1REI does not create deposits in vitro, while R61N aggregates as amyloid fibrils and D82I creates amorphous aggregates. Both mutated residues create a conserved salt bridge; thus, substitution of any of them should decrease V(L) domain stability. For these three proteins, 5 ns MD simulations were conducted in temperatures of 300 K and 400 K, with protonated and unprotonated acidic residues, mimicking acidic and neutral experimental pH conditions (3 sets: N300, N400, and A400). The analysis of trajectories focused on characterization of changes in conformational behavior and stability of Ig kappa light chain variable domain caused by single aminoacid substitutions that were experimentally proved to enhance aggregation propensity, both in the form of amyloid and amorphous aggregates. Residue D82 turns out to be involved not only in R61-D82 but also in K45-D82 interaction, which was not observed in the X-ray structure, but frequently populated simulations of 1REI. The substitution D82I excludes both interactions, resulting in substantial destabilization (i.e., easier aggregation). Examination of behavior of edge regions of V(L) beta-sandwich reveals significant alterations in D82I mutant compared to wild 1REI, while relatively small changes occur in R61N. This suggests that mild and slow destabilization is the reason of the conversion of V(L) to partially folded amyloidogenic intermediate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号