首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The alpha/beta‐hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid–base‐nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which co‐ordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand‐binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three‐dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in co‐ordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile.  相似文献   

2.
Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three‐dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/β‐hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the “CS‐D‐HC motif,” is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site. Proteins 2014; 82:2857–2867. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
4.
5.
Small heat shock proteins (sHSPs) play a central role in protein homeostasis under conditions of stress by binding partly unfolded, aggregate‐prone proteins and keeping them soluble. Like many sHSPs, the widely expressed human sHSP, αB‐crystallin (‘αB’), forms large polydisperse multimeric assemblies. Molecular interactions involved in both sHSP function and oligomer formation remain to be delineated. A growing database of structural information reveals that a central conserved α‐crystallin domain (ACD) forms dimeric building blocks, while flanking N‐ and C‐termini direct the formation of larger sHSP oligomers. The most commonly observed inter‐subunit interaction involves a highly conserved C‐terminal ‘IxI/V’ motif and a groove in the ACD that is also implicated in client binding. To investigate the inherent properties of this interaction, peptides mimicking the IxI/V motif of αB and other human sHSPs were tested for binding to dimeric αB‐ACD. IxI‐mimicking peptides bind the isolated ACD at 22°C in a manner similar to interactions observed in the oligomer at low temperature, confirming these interactions are likely to exist in functional αB oligomers.  相似文献   

6.
Gramicidin A (gA) is a polypeptide antibiotic, which forms dimeric channels specific for monovalent cations in artificial and biological membranes. It is a polymorphic molecule that adopts a unique variety of helical conformations, including antiparallel double‐stranded ↑↓β5.6 or ↑↓β7.2 helices (number of residues per turn) and a single‐stranded β6.3 helix (the ‘channel form’). The behavior of gA‐Cs+ complex in the micelles of TX‐100 was studied in this work. Transfer of the complex into the micelles activates a cascade of sequential conformational transitions monitored by CD and FT‐IR spectroscopy: At the first step after Cs+ removal, the RH ↑↓β5.6 helix is formed, which has been discussed so far only hypothetically. Kinetics of the transitions was measured, and the activation parameters were determined. The activation energies of the ↑↓β5.6 → β‐helical monomer transition in dioxane and dioxane/water solutions were also measured for comparison. The presence of water raises the transition rate constant ~103 times but does not lead to crucial fall of the activation energy. All activation energies were found in the 20–25 kcal/mol range, i.e. much lower than would be expected for unwinding of the double helix (when 28 H‐bonds are broken simultaneously). These results can be accounted for in the light of local unfolding (or ‘cracking’) model for large scale conformational transitions developed by the P. G.Wolynes team [Miyashita O, Onuchic JN, Wolynes PG. Proc. Natl. Acad. Sci. USA 2003; 100: 12570‐12575.]. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP‐binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full‐length ANPR expressed in CHO cells. ECD without chloride (ECD(?)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X‐ray structure of the bromide‐bound ECD is essentially identical to that of the chloride‐bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP‐bound structures, indicating exchangeable and reversible halide binding. Far‐UV CD and thermal unfolding data show that ECD(?) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(?) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride‐binding site in ANPR are highly conserved among receptor‐guanylate cyclases and metabotropic glutamate receptors. The chloride‐dependent ANP binding, reversible chloride binding, and the highly conserved chloride‐binding site motif suggest a regulatory role for the receptor bound chloride. Chloride‐dependent regulation of ANPR may operate in the kidney, modulating ANP‐induced natriuresis.  相似文献   

8.
Tetraspanin 1(TSPAN1) as a clinically relevant gene target in cancer has been studied, but there is no direct in vivo or vitro evidence for pulmonary fibrosis (PF). Using reanalysing Gene Expression Omnibus data, here, we show for the first time that TSPAN1 was markedly down‐regulated in lung tissue of patient with idiopathic PF (IPF) and verified the reduced protein expression of TSPAN1 in lung tissue samples of patient with IPF and bleomycin‐induced PF mice. The expression of TSPAN1 was decreased and associated with transforming growth factor‐β1 (TGF‐β1)‐induced molecular characteristics of epithelial‐to‐mesenchymal transition (EMT) in alveolar epithelial cells (AECs). Silencing TSPAN1 promoted cell migration, and the expression of alpha‐smooth muscle actin, vimentin and E‐cadherin in AECs with TGF‐β1 treatment, while exogenous TSPAN1 has the converse effects. Moreover, silencing TSPAN1 promotes the phosphorylation of Smad2/3 and stabilizes beta‐catenin protein, however, overexpressed TSPAN1 impeded TGF‐β1‐induced activation of Smad2/3 and beta‐catenin pathway in AECs. Together, our study implicates TSPAN1 as a key regulator in the process of EMT in AECs of IPF.  相似文献   

9.
The DNA barcodes are generally interpreted using distance‐based and character‐based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance‐based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character‐based approach more accurately defines this using a unique set of nucleotide characters. The character‐based analysis of full‐length barcode has some inherent limitations, like sequencing of the full‐length barcode, use of a sparse‐data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154‐bp fragment, from the transversion‐rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species‐specific barcode motifs for 109 species by the character‐based method, which successfully identifies the correct species using a pattern‐matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species‐specific mini‐barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini‐barcode approach will greatly benefit the field‐based system of rapid species identification.  相似文献   

10.
11.
12.
To investigate the roles of tripartite motif containing 52 (TRIM52) in human hepatic fibrosis in vitro, human hepatic stellate cell line LX‐2 cells were transfected with hepatitis B virus (HBV) replicon to establish HBV‐induced fibrosis in LX‐2 cells, and then treated with small interfering RNA‐mediated knockdown of TRIM52 (siTRIM52). LX‐2 cells without HBV replicon transfection were treated with lentiviruses‐mediated overexpression of TRIM52 and phosphatase magnesium dependent 1A (PPM1A). Fibrosis response of LX‐2 cells were assessed by the production of hydroxyproline (Hyp) and collagen I/III, as well as protein levels of α‐smooth muscle actin (α‐SMA). PPM1A and phosphorylated (p)‐Smad2/3 were measured to assess the mechanism. The correlation between TRIM52 and PPM1A was determined using co‐immunoprecipitation, and whether and how TRIM52 regulated the degradation of PPM1A were determined by ubiquitination assay. Our data confirmed HBV‐induced fibrogenesis of LX‐2 cells, as evidenced by significant increase in Hyp and collagen I/III and α‐SMA, which was associated with reduction of PPM1A and elevation of transforming growth factor‐β (TGF‐β), p‐Smad2/3, and p‐Smad3L. However, those changes induced by HBV were significantly attenuated with additional siTRIM52 treatment. Similar to HBV, overexpression of TRIM52 exerted promoted effect in the fibrosis of LX‐2 cells. Interestingly, TRIM52 induced the fibrogenesis of LX‐2 cells and the activation of TGF‐β/Smad pathway were significantly reversed by PPM1A overexpression. Furthermore, our data confirmed TRIM52 as a deubiquitinase that influenced the accumulation of PPM1A protein, and subsequently regulated the fibrogenesis of LX‐2 cells. TRIM52 was a fibrosis promoter in hepatic fibrosis in vitro, likely through PPM1A‐mediated TGF‐β/Smad pathway.  相似文献   

13.
14.
15.
16.
H uman α ‐lactalbumin m ade le thal to t umor cells (HAMLET) and its analogs are partially unfolded protein‐oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge‐specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively‐charged lysine residues to negatively‐charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild‐type α‐lactalbumin‐oleic acid complex. With the addition of OA, the wild‐type and guanidinated α‐lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α‐lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively‐charged basic groups on α‐lactalbumin and the negatively‐charged carboxylate groups on OA molecules play an essential role in the binding of OA to α‐lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Alzheimer's disease (AD) is characterized clinically by memory loss and cognitive decline. Protein kinase A (PKA)‐CREB signaling plays a critical role in learning and memory. It is known that glucose uptake and O‐GlcNAcylation are reduced in AD brain. In this study, we found that PKA catalytic subunits (PKAcs) were posttranslationally modified by O‐linked N‐acetylglucosamine (O‐GlcNAc). O‐GlcNAcylation regulated the subcellular location of PKAcα and PKAcβ and enhanced their kinase activity. Upregulation of O‐GlcNAcylation in metabolically active rat brain slices by O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidenamino) N‐phenylcarbamate (PUGNAc), an inhibitor of N‐acetylglucosaminidase, increased the phosphorylation of tau at the PKA site, Ser214, but not at the non‐PKA site, Thr205. In contrast, in rat and mouse brains, downregulation of O‐GlcNAcylation caused decreases in the phosphorylation of CREB at Ser133 and of tau at Ser214, but not at Thr205. Reduction in O‐GlcNAcylation through intracerebroventricular injection of 6‐diazo‐5‐oxo‐l ‐norleucine (DON), the inhibitor of glutamine fructose‐6‐phosphate amidotransferase, suppressed PKA‐CREB signaling and impaired learning and memory in mice. These results indicate that in addition to cAMP and phosphorylation, O‐GlcNAcylation is a novel mechanism that regulates PKA‐CREB signaling. Downregulation of O‐GlcNAcylation suppresses PKA‐CREB signaling and consequently causes learning and memory deficits in AD.  相似文献   

18.
Protein‐protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein‐protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid‐body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near‐native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid‐body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set‐theoretic measure to test whether the scoring functions are capable of identifying near‐native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287–1297. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号