首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barik A  C N  P M  Bahadur RP 《Proteins》2012,80(7):1866-1871
We have developed a nonredundant protein-RNA docking benchmark dataset, which is derived from the available bound and unbound structures in the Protein Data Bank involving polypeptide and nucleic acid chains. It consists of nine unbound-unbound cases where both the protein and the RNA are available in the free form. The other 36 cases are of unbound-bound type where only the protein is available in the free form. The conformational change upon complex formation is calculated by a distance matrix alignment method, and based on that, complexes are classified into rigid, semi-flexible, and full flexible. Although in the rigid body category, no significant conformational change accompanies complex formation, the fully flexible test cases show large domain movements, RNA base flips, etc. The benchmark covers four major groups of RNA, namely, t-RNA, ribosomal RNA, duplex RNA, and single-stranded RNA. We find that RNA is generally more flexible than the protein in the complexes, and the interface region is as flexible as the molecule as a whole. The structural diversity of the complexes in the benchmark set should provide a common ground for the development and comparison of the protein-RNA docking methods. The benchmark can be freely downloaded from the internet.  相似文献   

2.
A minimal model of protein–protein binding affinity that takes into account only two structural features of the complex, the size of its interface, and the amplitude of the conformation change between the free and bound subunits, is tested on the 144 complexes of a structure‐affinity benchmark. It yields Kd values that are within two orders of magnitude of the experiment for 67% of the complexes, within three orders for 88%, and fails on 12%, which display either large conformation changes, or a very high or a low affinity. The minimal model lacks the specificity and accuracy needed to make useful affinity predictions, but it should help in assessing the added value of parameters used by more elaborate models, and set a baseline for evaluating their performances.  相似文献   

3.
《Proteins》2017,85(4):741-752
Protein–RNA docking is still an open question. One of the main challenges is to develop an effective scoring function that can discriminate near‐native structures from the incorrect ones. To solve the problem, we have constructed a knowledge‐based residue‐nucleotide pairwise potential with secondary structure information considered for nonribosomal protein–RNA docking. Here we developed a weighted combined scoring function RpveScore that consists of the pairwise potential and six physics‐based energy terms. The weights were optimized using the multiple linear regression method by fitting the scoring function to L_rmsd for the bound docking decoys from Benchmark II. The scoring functions were tested on 35 unbound docking cases. The results show that the scoring function RpveScore including all terms performs best. Also RpveScore was compared with the statistical mechanics‐based method derived potential ITScore‐PR, and the united atom‐based statistical potentials QUASI‐RNP and DARS‐RNP. The success rate of RpveScore is 71.6% for the top 1000 structures and the number of cases where a near‐native structure is ranked in top 30 is 25 out of 35 cases. For 32 systems (91.4%), RpveScore can find the binding mode in top 5 that has no lower than 50% native interface residues on protein and nucleotides on RNA. Additionally, it was found that the long‐range electrostatic attractive energy plays an important role in distinguishing near‐native structures from the incorrect ones. This work can be helpful for the development of protein–RNA docking methods and for the understanding of protein–RNA interactions. RpveScore program is available to the public at http://life.bjut.edu.cn/kxyj/kycg/2017116/14845362285362368_1.html Proteins 2017; 85:741–752. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Protein‐protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure‐based force field for intramolecular contributions. The approach was systematically evaluated on a large protein‐protein docking benchmark, starting from an enriched decoy set of rigidly docked protein–protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. Proteins 2015; 83:248–258. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near‐native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure‐based models of orthologs were generated for comparison with sequence‐based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940–1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

6.
HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on water‐mediated contact probabilities. The latter were derived from an analysis of water contact frequencies from high‐resolution crystal structures. Here, we introduce a simple water‐mediated amino acid–amino acid contact probability scale derived from the Kyte‐Doolittle hydrophobicity scale and assess its performance on the largest high‐resolution dataset developed to date for solvated docking. Both scales yield high‐quality docking results. The novel and simple hydrophobicity scale, which should reflect better the physicochemical principles underlying contact propensities, leads to a performance improvement of around 10% in ranking, cluster quality and water recovery at the interface compared with the statistics‐based original solvated docking protocol. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Hwang H  Pierce B  Mintseris J  Janin J  Weng Z 《Proteins》2008,73(3):705-709
We present version 3.0 of our publicly available protein-protein docking benchmark. This update includes 40 new test cases, representing a 48% increase from Benchmark 2.0. For all of the new cases, the crystal structures of both binding partners are available. As with Benchmark 2.0, Structural Classification of Proteins (Murzin et al., J Mol Biol 1995;247:536-540) was used to remove redundant test cases. The 124 unbound-unbound test cases in Benchmark 3.0 are classified into 88 rigid-body cases, 19 medium-difficulty cases, and 17 difficult cases, based on the degree of conformational change at the interface upon complex formation. In addition to providing the community with more test cases for evaluating docking methods, the expansion of Benchmark 3.0 will facilitate the development of new algorithms that require a large number of training examples. Benchmark 3.0 is available to the public at http://zlab.bu.edu/benchmark.  相似文献   

8.
The buried surface area (BSA), which measures the size of the interface in a protein–protein complex may differ from the accessible surface area (ASA) lost upon association (which we call DSA), if conformation changes take place. To evaluate the DSA, we measure the ASA of the interface atoms in the bound and unbound states of the components of 144 protein–protein complexes taken from the Protein–Protein Interaction Affinity Database of Kastritis et al. (2011). We observe differences exceeding 20%, and a systematic bias in the distribution. On average, the ASA calculated in the bound state of the components is 3.3% greater than in their unbound state, and the BSA, 7% greater than the DSA. The bias is observed even in complexes where the conformation changes are small. An examination of the bound and unbound structures points to a possible origin: local movements optimize contacts with the other component at the cost of internal contacts, and presumably also the binding free energy.  相似文献   

9.
Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high‐resolution crystallographically characterized “dry” protein–protein complexes and was shown to reliably identify native‐like models. However, most current protein–protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the “truly” bridging waters at the 30 protein–protein interfaces and we utilized them in “solvated” docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ~24% in the average hit‐count within the top‐10 predictions the protein–protein dataset was seen, compared to standard “dry” docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native‐like structure predictions. Proteins 2014; 82:916–932. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Protein–protein interactions (PPIs) are involved in diverse functions in a cell. To optimize functional roles of interactions, proteins interact with a spectrum of binding affinities. Interactions are conventionally classified into permanent and transient, where the former denotes tight binding between proteins that result in strong complexes, whereas the latter compose of relatively weak interactions that can dissociate after binding to regulate functional activity at specific time point. Knowing the type of interactions has significant implications for understanding the nature and function of PPIs. In this study, we constructed amino acid substitution models that capture mutation patterns at permanent and transient type of protein interfaces, which were found to be different with statistical significance. Using the substitution models, we developed a novel computational method that predicts permanent and transient protein binding interfaces (PBIs) in protein surfaces. Without knowledge of the interacting partner, the method uses a single query protein structure and a multiple sequence alignment of the sequence family. Using a large dataset of permanent and transient proteins, we show that our method, BindML+, performs very well in protein interface classification. A very high area under the curve (AUC) value of 0.957 was observed when predicted protein binding sites were classified. Remarkably, near prefect accuracy was achieved with an AUC of 0.991 when actual binding sites were classified. The developed method will be also useful for protein design of permanent and transient PBIs. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Qian Wang  Luhua Lai 《Proteins》2014,82(10):2472-2482
Target structure‐based virtual screening, which employs protein‐small molecule docking to identify potential ligands, has been widely used in small‐molecule drug discovery. In the present study, we used a protein–protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all‐to‐all protein–protein docking run on a large dataset was performed. The three‐dimensional rigid docking program SDOCK was used to examine protein–protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z‐score, and convergency of the low‐score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all‐to‐all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor‐α (TNFα), which is a well‐known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top‐ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein–protein docking for the discovery of novel binding proteins for specific protein targets. Proteins 2014; 82:2472–2482. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Iris Antes 《Proteins》2010,78(5):1084-1104
Molecular docking programs play an important role in drug development and many well‐established methods exist. However, there are two situations for which the performance of most approaches is still not satisfactory, namely inclusion of receptor flexibility and docking of large, flexible ligands like peptides. In this publication a new approach is presented for docking peptides into flexible receptors. For this purpose a two step procedure was developed: first, the protein–peptide conformational space is scanned and approximate ligand poses are identified and second, the identified ligand poses are refined by a new molecular dynamics‐based method, optimized potential molecular dynamics (OPMD). The OPMD approach uses soft‐core potentials for the protein–peptide interactions and applies a new optimization scheme to the soft‐core potential. Comparison with refinement results obtained by conventional molecular dynamics and a soft‐core scaling approach shows significant improvements in the sampling capability for the OPMD method. Thus, the number of starting poses needed for successful refinement is much lower than for the other methods. The algorithm was evaluated on 15 protein–peptide complexes with 2–16mer peptides. Docking poses with peptide RMSD values <2.10 Å from the equilibrated experimental structures were obtained in all cases. For four systems docking into the unbound receptor structures was performed, leading to peptide RMSD values <2.12 Å. Using a specifically fitted scoring function in 11 of 15 cases the best scoring poses featured a peptide RMSD ≤2.10 Å. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Protein docking procedures carry out the task of predicting the structure of a protein–protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved ‘target’ complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody–antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark , and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10–16. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
A replica‐exchange Monte Carlo (REMC) ensemble docking approach has been developed that allows efficient exploration of protein–protein docking geometries. In addition to Monte Carlo steps in translation and orientation of binding partners, possible conformational changes upon binding are included based on Monte Carlo selection of protein conformations stored as ordered pregenerated conformational ensembles. The conformational ensembles of each binding partner protein were generated by three different approaches starting from the unbound partner protein structure with a range spanning a root mean square deviation of 1–2.5 Å with respect to the unbound structure. Because MC sampling is performed to select appropriate partner conformations on the fly the approach is not limited by the number of conformations in the ensemble compared to ensemble docking of each conformer pair in ensemble cross docking. Although only a fraction of generated conformers was in closer agreement with the bound structure the REMC ensemble docking approach achieved improved docking results compared to REMC docking with only the unbound partner structures or using docking energy minimization methods. The approach has significant potential for further improvement in combination with more realistic structural ensembles and better docking scoring functions. Proteins 2017; 85:924–937. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Recent advances in DNA sequencing techniques have identified rare single‐nucleotide variants with less than 1% minor allele frequency. Despite the growing interest and physiological importance of rare variants in genome sciences, less attention has been paid to the allele frequency of variants in protein sciences. To elucidate the characteristics of genetic variants on protein interaction sites, from the viewpoints of the allele frequency and the structural position of variants, we mapped about 20,000 human SNVs onto protein complexes. We found that variants are less abundant in protein interfaces, and specifically the core regions of interfaces. The tendency to “avoid” the interfacial core is stronger among common variants than rare variants. As amino acid substitutions, the trend of mutating amino acids among rare variants is consistent in different interfacial regions, reflecting the fact that rare variants result from random mutations in DNA sequences, whereas amino acid changes of common variants vary between the interfacial core and rim regions, possibly due to functional constraints on proteins. This study illustrated how the allele frequency of variants relates to the protein structural regions and the functional sites in general and will lead to deeper understanding of the potential deleteriousness of rare variants at the structural level. Exceptional cases of the observed trends will shed light on the limitations of structural approaches to evaluate the functional impacts of variants.  相似文献   

18.
Di Cui  Shuching Ou  Sandeep Patel 《Proteins》2014,82(12):3312-3326
Hydrophobic effects, often conflated with hydrophobic forces, are implicated as major determinants in biological association and self‐assembly processes. Protein–protein interactions involved in signaling pathways in living systems are a prime example where hydrophobic effects have profound implications. In the context of protein–protein interactions, a priori knowledge of relevant binding interfaces (i.e., clusters of residues involved directly with binding interactions) is difficult. In the case of hydrophobically mediated interactions, use of hydropathy‐based methods relying on single residue hydrophobicity properties are routinely and widely used to predict propensities for such residues to be present in hydrophobic interfaces. However, recent studies suggest that consideration of hydrophobicity for single residues on a protein surface require accounting of the local environment dictated by neighboring residues and local water. In this study, we use a method derived from percolation theory to evaluate spanning water networks in the first hydration shells of a series of small proteins. We use residue‐based water density and single‐linkage clustering methods to predict hydrophobic regions of proteins; these regions are putatively involved in binding interactions. We find that this simple method is able to predict with sufficient accuracy and coverage the binding interface residues of a series of proteins. The approach is competitive with automated servers. The results of this study highlight the importance of accounting of local environment in determining the hydrophobic nature of individual residues on protein surfaces. Proteins 2014; 82:3312–3326. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Hydrogen bonds are important interaction forces observed in protein structures. They can be classified as stronger or weaker depending on their energy, thereby reflecting on the type of donor. The contribution of weak hydrogen bonds is deemed as an important factor toward structure stability along with the stronger bonds. One such bond, the C‐H…O type hydrogen bond, is shown to make a contribution in maintaining three dimensional structures of proteins. Apart from their presence within protein structures, the role of these bonds in protein–ligand interactions is also noteworthy. In this study, we present a statistical analysis on the presence of C‐H…O hydrogen bonds observed between FKBPs and their cognate ligands. The FK506‐binding proteins (FKBPs) carry peptidyl cis–trans isomerase activity apart from the immunosuppressive property by binding to the immunosuppressive drugs FK506 or rapamycin. Because the active site of FKBPs is lined up by many hydrophobic residues, we speculated that the prevalence of C‐H…O hydrogen bonds will be considerable. In a total of 25 structures analyzed, a higher frequency of C‐H…O hydrogen bonds is observed in comparison with the stronger hydrogen bonds. These C‐H…O hydrogen bonds are dominated by a highly conserved donor, the Cα/β of Val55 and an acceptor, the backbone oxygen of Glu54. Both these residues are positioned in the β4‐α1 loop, whereas the other residues Tyr26, Phe36 and Phe99 with higher frequencies are lined up at the opposite face of the active site. These preferences could be implicated in FKBP pharmacophore models toward enhancing the ligand affinity. This study could be a prelude to studying other proteins with hydrophobic pockets to gain better insights into ligand recognition. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Post‐translational modifications (PTM) of proteins can control complex and dynamic cellular processes via regulating interactions between key proteins. To understand these regulatory mechanisms, it is critical that we can profile the PTM‐dependent protein–protein interactions. However, identifying these interactions can be very difficult using available approaches, as PTMs can be dynamic and often mediate relatively weak protein–protein interactions. We have recently developed CLASPI (cross‐linking‐assisted and stable isotope labeling in cell culture‐based protein identification), a chemical proteomics approach to examine protein–protein interactions mediated by methylation in human cell lysates. Here, we report three extensions of the CLASPI approach. First, we show that CLASPI can be used to analyze methylation‐dependent protein–protein interactions in lysates of fission yeast, a genetically tractable model organism. For these studies, we examined trimethylated histone H3 lysine‐9 (H3K9Me3)‐dependent protein–protein interactions. Second, we demonstrate that CLASPI can be used to examine phosphorylation‐dependent protein–protein interactions. In particular, we profile proteins recognizing phosphorylated histone H3 threonine‐3 (H3T3‐Phos), a mitotic histone “mark” appearing exclusively during cell division. Our approach identified survivin, the only known H3T3‐Phos‐binding protein, as well as other proteins, such as MCAK and KIF2A, that are likely to be involved in weak but selective interactions with this histone phosphorylation “mark”. Finally, we demonstrate that the CLASPI approach can be used to study the interplay between histone H3T3‐Phos and trimethylation on the adjacent residue lysine 4 (H3K4Me3). Together, our findings indicate the CLASPI approach can be broadly applied to profile protein–protein interactions mediated by PTMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号