首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetative hyphae of Aspergillus niger rapidly converted caproic acid into 2-pentanone. More caproic acid was required for maximal ketone production at alkaline as compared to acidic pH values. Further increases in caproate concentrations at each pH value tested (4.5, 5.5, 6.5, 7.5, and 8.5) resulted in inhibition of ketone production and O2 uptake. At alkaline pH values (8.5 and 7.5), oxygen uptake above the endogenous level and the production of 2-pentanone were parallel. This relationship did not hold at acidic pH values. At these pH values, ketone production continued (pH 6.5) or attained a maximum (pH 5.5 and 4.5) at caproate concentrations at which oxygen uptake was inhibited below endogenous levels. These data indicate that endogenous oxygen uptake was not inhibited by caproate at alkaline pH values at concentrations which did inhibit caproate oxidation and 2-pentanone production. Conversely, at acidic pH values, endogenous oxygen uptake was vigorously inhibited by caproate at concentrations at which exogenous fatty acid oxidation and 2-pentanone production were less affected. Simon-Beevers plots of these data showed that the undissociated acid was the permeant form of caproic acid. The fatty anion appeared to be the active or inhibitory form of caproate within the cell. Vegetative hyphae of A. niger were poorly buffered. Once the hyphae were washed and resuspended in phosphate buffer, they were well buffered towards inhibitory concentrations of caproic acid. These findings suggest that the primary mechanism(s) by which caproate inhibits oxygen uptake and ketone formation does not involve a change in the intracellular pH.  相似文献   

2.
Summary The stability in the soil of a new penicillin (methicillin) which is resistant to staphylococcal penicillinase, has been investigated. The results revealed its inactivation in both sterile and non-sterile soils of p H 7.4–7.6, with indication of biological inactivation in the latter.Three strains identified as Pseudomonas spp., were isolated by enrichment technique from the soil, and were found able to inactivate methicillin through production of an exocellular enzyme destructable at 90°C. Such an enzyme proved to be a type of penicillinase that inactivated benzyl penicillin more actively than methicillin.  相似文献   

3.
Methicillin (intrinsic) resistance of Staphylococcus aureus was suppressed almost completely by regulatory gene (penI1) mutations of penicillinase plasmids that made penicillinase production strictly noninducible. Methicillin resistance was restored by secondary regulatory gene mutations that altered the noninducible phenotype or by complementation with a compatible plasmid that did not bear the noninducible mutation. No evidence was obtained for genetic linkage between a penicillinase plasmid and the gene for methicillin resistance. We suggest, therefore, that the mutant noninducible repressor acted in trans by binding to a site on the methicillin resistance determinant. This hypothesis would imply an appreciable degree of homology between penicillinase plasmids and methicillin resistance genes.  相似文献   

4.
Cells of uninduced Bacillus licheniformis (strain 749) in mid-logarithmic phase have no extensive intracytoplasmic membrane. After induction with cephalosporin C, characteristic organelles that contain tubules and vesicles with single-layered membranes and no visible internal substructure can be seen in thin sections in the periplasm. A magnoconstitutive penicillinase producer (749/C) contains similar structures. It is suggested that they represent a penicillinase secretory apparatus. In the first 15 min after induction, negatively stained preparations of induced 749 show large intracellular vesicles without individual contact with the cell surface. Negatively stained 749/C and fully induced 749 contain invaginations comparable to the structures seen in thin sections. When protoplasts of induced 749 and of 749/C are prepared, vesicles and tubules similar to those seen in thin sections of whole cells are liberated from the cell. Growing protoplasts of induced 749 show massive convolutions of the peripheral membrane, multiple layers of membrane, and characteristic long, slender tubules extending from the protoplast surface. These phenomena are not observed in uninduced 749 except for the production of a relatively small number of tubules. In 749/C, there were fewer convolutions than in induced 749, although tubule production was similar. Multiple layers of membrane were not observed in 749/C. The relation of the penicillinase secretory structures to mesosomes and to secretory structures of other organisms is discussed.  相似文献   

5.
At neutral pH, the rate of penicillinase synthesis by staphylococci declines gradually after removal of free inducer, while at pH 5.4 enzyme formation is generally linear for an extended period. Linear synthesis of penicillinase was observed at neutral pH in nonsaturating concentrations (1 μg/ml) of actinomycin D. The rate of enzyme synthesis, corrected for inhibition of growth caused by the antibiotic, was relatively independent of the time of actinomycin addition. The lag preceding linear enzyme formation increased with the interval between induction and the addition of actinomycin. The findings are consistent with the concept that, at neutral pH, “operons” activated by induction are rapidly repressed, while at pH 5.4, this process is delayed.

At a concentration of 4 μg/ml, actinomycin D blocked penicillinase messenger synthesis and also elicited a short-lived acceleration of the increase of penicillinase activity in uninduced and, late after induction, in induced cultures. This effect did not require a functional genomic repressor mechanism since it occurred also in a penicillinase-constitutive strain. It required protein synthesis and could not be attributed to a greater enzyme stability in the presence of actinomycin. The results suggest enhanced penicillinase translation after addition of actinomycin D.

  相似文献   

6.
Horseradish peroxidase isoenzyme C (HRPC) mutants were constructed in order to understand the involvement of two key distal heme cavity residues, histidine 42 and arginine 38, in the formation and structure of the carbon monoxide complex of HRPC (carbonyl HRPC). The rates of CO binding to the wild-type glycosylated and non-glycosylated recombinant (HRPC*) ferrous enzymes were essentially identical and exhibited the same pH dependence with pK as at 7.4 and 4.0. Data obtained with the His-42?→?Leu [(H42L)HRPC*)] and Arg-38?→?Leu [(R38L)HRPC*] mutants allowed the pK a at 7.4 in ferrous HRPC to be assigned to His-42. The infra-red and electronic absorption spectra of HRPC-CO, HRPC*-CO, (R38L)HRPC*-CO and (H42L)HRPC*-CO have been investigated over the pH range 3.0–10.0. HRPC*-CO exhibited two ν?(CO) bands at 1934?cm–1 and 1905?cm–1 whose relative intensity changed with pH, showing an acidic and a basic pK a as previously reported for HRPC [IE Holzbaur; AM English, AA Ismail (1996) J Am Chem Soc 118?:?3354–3359]. (H42L)HRPC*-CO and (R38L)HRPC*-CO exhibited single infra-red bands at 1924.2?cm–1 (pH?7.0) and 1941.5?cm–1 (pH?5.0) respectively. Acidic and alkaline pK as were determined from shifts in the infra-red frequencies and by UV-visible spectrophotometry at the Söret maxima. (H42L)HRPC*-CO exhibited a pK a at ~pH?4.0 but no alkaline pK a. (R38L)HRPC*-CO exhibited a single pK a at pH?6.5. Shifts of 2–3?cm–1 in ν?(CO) with (H42L)HRPC*-CO in D2O show that a distal residue is H-bonding to the CO in this variant at both pD?7.5 and 3.9. However, with (R38L)HRPC*-CO, only a small shift of the ν?(CO) band was observed at pD?5.5. The results are consistent with the involvement of Arg-38 in H-bonding to the CO ligand in HRPC and with His-42 modulating the distribution of carbonyl HRPC conformers below pH?8.7. These data are discussed in terms of the importance of distal pocket polarity in HRPC. It is concluded that His-42 can have a pK a between 4.0 and 8.7 depending on its environment and the nature of the distal ligand at position 38. This enables His-42 to carry out multiple functions during the catalytic cycle of HRPC.  相似文献   

7.
Preparation of concentrated lactic streptococcus starters   总被引:10,自引:7,他引:3       下载免费PDF全文
Single-strain cultures of Streptococcus cremoris were grown in a semisynthetic medium with automatic pH control. After centrifugation, the cells were resuspended in sterile nonfat milk (2% of the original volume). There was no significant difference in the maximum population attained when cultures were grown at pH values of 5.5, 6.0, or 6.5 with sodium hydroxide as the neutralizer. With ammonium hydroxide as the neutralizer, maximum populations obtained were increased about twofold. In most cases, the acid-producing ability of the culture concentrates was comparable to that of fresh-milk cultures. There was some variation among strains of S. cremoris with respect to the effects of different neutralizers and levels of pH control on the biological activity of the culture concentrates. The culture concentrates were stored in liquid nitrogen for as long as 231 days without significant loss in biological activity.  相似文献   

8.
Concentrated Cultures of Leuconostoc citrovorum   总被引:3,自引:3,他引:0       下载免费PDF全文
Two single-strain cultures of Leuconostoc citrovorum were grown in a broth medium with automatic pH control. Culture concentrates were prepared by centrifugally harvesting the cells and resuspending them in 1/50th the original volume in 10% nonfat milk solids. The concentrates were stored in liquid nitrogen until analyzed. The maximum population attainable was approximately equal when cultures were grown at pH 6.0, 6.5, or 7.0 with sodium hydroxide or ammonium hydroxide as the neutralizer. Citrate was required in the growth medium for the cultures to be able to produce diacetyl subsequently in milk. At pH 6.0, the cells reached maximum population and ability to produce diacetyl. Organoleptic analysis by an experienced flavor panel showed a preference for cottage cheese creamed with a creaming mixture prepared with a culture concentrate rather than a normal culture. The culture concentrates maintained their viability and ability to produce diacetyl for at least 30 days when stored in liquid nitrogen.  相似文献   

9.
A penicillinase mutant penP102, isolated after ICR (acridine mustard) mutagenesis of Bacillus licheniformis strain 749/C, retains about 50% of the wild-type penicillinase specific activity. The penicillinase produced by this mutant differs from the wild-type protein in its sensitivity to pH and its electrophoretic behaviour. The penP102 mutation appears to have several other phenotypic effects, including an increase in the efficiency of release of the extracellular form of the enzyme.The penP102 penicillinase has been purified and its amino acid sequence compared to that of the wild-type enzyme. The mutation has resulted in the replacement of the last three amino acids of the wild-type enzyme and the addition of 17 residues at the carboxy-terminus. Comparison of the wild-type and mutant amino acid sequences shows that the mutational event is a single nucleotide deletion from the codon for asparagine265. Consideration of the possible nucleotide sequence for the region beyond the carboxy-terminus of the wild-type protein shows that there are no possible termination codons until four and six triplets beyond the codon for the carboxy-terminal lysine, indicating that the carboxy-terminus of the wild-type extracellular penicillinase is generated by proteolytic cleavage of a larger precursor protein.  相似文献   

10.
In mixed cultures of staphylococci a transfer of the resistance to methicillin and penicillinase plasmids as well as tetracycline and chloramphenicol plasmids was investigated. It was shown that the resistance to methicillin was transferred in mixed cultures from one strain of S. aureus to another and from S. epidermidis to S. aureus. In both cases transfer of methicillin resistance required, the presence of penicillinase plasmid in recipient or donor strain. In the case of other markers transmission was independent. Moreover it was shown that the transfer of resistance genes in mixed cultures was mediated by bacteriophage of the serologic group A.  相似文献   

11.
The apparent stimulation of cephalosporin C biosynthesis by sodium thiosulfate is due to a nonbiological conversion of cephalosporin C to a new derivative, cephalosporin Cx. The new compound is more active than cephalosporin C against the assay organism, Escherichia coli W-208. Cephalosporin Cx retains the properties of ultraviolet absorption and resistance to penicillinase, but migrates more slowly than cephalosporin C in the paper-chromatographic system used.  相似文献   

12.
Bacterial ferritin from Azotobacter vinelandii (AvBFo has a function in H2 uptake. The Fe3+ reduction on the surface of the iron core from AvBFo is accompanied simultaneously by H2 uptake, with a maximum activity of H2 uptake of 450 H2/AvBFo. A reduction potential of ?402 mV for iron reduction on the surface of the core is found. A shift to the red the protein absorbance peaks ranging from 280 to 290 nm is observed between pH5 and 9 under 100% H2 reduction. The reduction potential for iron release becomes negative at a rate of 0.025 mV/Fe2+ released. The kinetics of iron release on the surface of the core is a first-order reaction.  相似文献   

13.
The kinetic behavior andpH-stability of recombinant human renin was analyzed using a new fluorogenic substrate based on the normal P6-P3′ renin cleavage sequence in human angiotensinogen. The design of this fluorogenic substrate makes possible, for the first time, direct monitoring of the kinetics of proteolytic conversion of prorenin to renin. ThepH-stability profile for renin, measured with the substrate at 25°C, indicated a broad plateau of stability betweenpH 6.0 and 10.0. Analysis of thepH-activity profile of renin for the substrate indicated a minimumK m (~1.8 µM) atpH ~7.4 and a maximumV m betweenpH 7.4 and 8.0. The thermodynamics of the binding of a novel, soluble, peptidomimetic inhibitor to renin indicated it is possible to retain the tight-binding characteristics and enthalpy contributions to binding of larger peptide-derived inhibitors, while reducing inhibitor size and entropic contributions to binding. A novel derivative of the fluorogenic substrate, containing a 3-methyl histidine substitution at the P2 site, was used to test the recent hypothesis that renin functions by virtue of substrate-directed catalysis.  相似文献   

14.
Dietary non-heme iron contains ferrous [Fe(II)] and ferric [Fe(III)] iron fractions and the latter should hydrolyze, forming Fe(III) oxo-hydroxide particles, on passing from the acidic stomach to less acidic duodenum. Using conditions to mimic the in vivo hydrolytic environment we confirmed the formation of nanodisperse fine ferrihydrite-like particles. Synthetic analogues of these (~ 10 nm hydrodynamic diameter) were readily adherent to the cell membrane of differentiated Caco-2 cells and internalization was visualized using transmission electron microscopy. Moreover, Caco-2 exposure to these nanoparticles led to ferritin formation (i.e., iron utilization) by the cells, which, unlike for soluble forms of iron, was reduced (p=0.02) by inhibition of clathrin-mediated endocytosis. Simulated lysosomal digestion indicated that the nanoparticles are readily dissolved under mildly acidic conditions with the lysosomal ligand, citrate. This was confirmed in cell culture as monensin inhibited Caco-2 utilization of iron from this source in a dose dependent fashion (p<0.05) whilet soluble iron was again unaffected. Our findings reveal the possibility of an endocytic pathway for acquisition of dietary Fe(III) by the small intestinal epithelium, which would complement the established DMT-1 pathway for soluble Fe(II).  相似文献   

15.
The mechanism of uptake of phenanthrene by Mycobacterium sp. strain RJGII-135, a polycyclic hydrocarbon-degrading bacterium, was examined with cultures grown on phenanthrene (induced for phenanthrene metabolism) and acetate (uninduced). Washed cells were suspended in aqueous solutions of [9-14C]phenanthrene, and then the cells were collected by filtration. Low-level steady-state 14C concentrations in uninduced cells were achieved within the first 15 s of incubation. This immediate uptake did not show saturation kinetics and was not susceptible to inhibitors of active transport, cyanide and carbonyl cyanide m-chlorophenylhydrazone. These results indicated that phenanthrene enters rapidly into the cells by passive diffusion. However, induced cells showed cumulative uptake over several minutes. The initial uptake rates followed saturation kinetics, with an apparent affinity constant (Kt) of 26 ± 3 nM (mean ± standard deviation). Uptake of phenanthrene by induced cells was strongly inhibited by the inhibitors. Analysis of cell-associated 14C-labeled compounds revealed that the concurrent metabolism during uptake was rapid and was not saturated at the substrate concentrations tested, suggesting that the saturable uptake observed reflects membrane transport rather than intracellular metabolism. These results were consistent with the presence of a saturable, energy-dependent mechanism for transport of phenanthrene in induced cells. Moreover, the kinetic data for the cumulative uptake suggested that phenanthrene is specifically bound by induced cells, based on its saturation with an apparent dissociation constant (Kd) of 41 ± 21 nM (mean ± standard deviation). Given the low values of Kt and Kd, Mycobacterium sp. strain RJGII-135 may use a high-affinity transport system(s) to take up phenanthrene from the aqueous phase.  相似文献   

16.
Ornithinyl ester of phosphatidyl glycerol was found to accumulate in Mycobacterium 607 under acidic conditions (pH 5.6) of growth or in cultures of ultraviolet-irradiated (320 to 420 nm) bacilli. There was a corresponding decrease in cardiolipin content of the organisms under these conditions.  相似文献   

17.
The rate of oxidation of β-nitropropionic acid (BNP) to nitrate by replacement cultures of Aspergillus flavus was linear. For each micromole of BNP assimilated, 1 μmole of nitrate was detected. BNP was readily oxidized at pH 3.8, but not at pH 6.8. In the presence of glucose, nitrate was not detected until after all of the glucose had been utilized. The effect of glucose is attributed to its inhibition of BNP uptake and also to its role as an electron donor for a nitrate reductase.  相似文献   

18.
TheV max of the uptake of choline was increased in nerve cell cultures by lowering (from 7.4 to 6.5) or increasing (from 7.4 to 8.1) the pH. In neurons no effect was observed on the value of theK m's of the uptake of either the apparent high or low affinity components. In glial cells only a low affinity component was measured at pH 6.5 and diffusion was observed at pH 8.1. An excess of K+ ions in the incubation medium reproduced the increase inV max observed with changes in pH suggesting a possible dependence of the uptake of choline upon the H+ and OH gradients. Taking into account the characteristics already known of the transport of choline into nerve cells, such a dependence adds new insight in the mechanisms underlying the transport and indicates another possible regulation of choline entry, eventually directed towards the synthesis of acetylcholine.  相似文献   

19.
The effects of pH, trypsin, and phospholipase C on the topographic distribution of acidic anionic residues on human erythrocytes was investigated using colloidal iron hydroxide labeling of mounted, fixed ghost membranes. After glutaraldehyde fixation at pH 6.5–7.5, the positively charged colloidal particles were bound to the membranes in small randomly distributed clusters. The clusters of anionic sites were reversibly aggregated by incubation at pH 5.5 before fixation at the same pH. These results correlate with the distribution of intramembranous particles found by Pinto da Silva (J. Cell Biol. 53:777), with the exception that the distribution of anionic sites on a majority of the fixed ghosts at pH 4.5 was aggregated instead of dispersed. The randomly distributed clusters could be nonreversibly aggregated by trypsin or phospholipase C treatment of intact ghosts before glutaraldehyde fixation. Previous glutaraldehyde fixation prevented trypsin and pH induced aggregation of the colloidal iron sites. Evidence that N-acetylneuraminic acid groups are the principal acidic residues binding colloidal iron was the elimination of greater than 85% of the colloidal iron labeling to neuraminidase-treated cell membranes. Colloidal iron binding N-acetylneuraminic acid residues may reside on membrane molecules such as glycophorin, a sialoglycoprotein which contains the majority of the N-acetylneuraminic acid found on the human erythrocyte membrane.  相似文献   

20.
The Caco-2 cell line was used as a model to determine if the type of fatty acid, unsaturated versus saturated, differentially altered the uptake and transport of iron in the human intestine and if the changes were the result of alterations in monolayer integrity and paracellular transport. Cells were cultured in either a lower-iron or normal-iron medium and incubated with a bovine serum albumin control, linoleate, oleate, palmatate, or stearate. Oleate, palmatate, and stearate enhanced (p<0.05) iron uptake in cells grown in lower iron. The fatty acid effect on iron uptake by cells grown in normal iron was not as pronounced. Iron transport was not affected (p>0.05) by an interaction between the type of medium (iron concentration) and the type of fatty acid. Iron transport was enhanced (p<0.05) with palmatate and stearate. Various indicators of monolayer integrity and paracellular transport were also affected by the fatty acids, thus impacting iron uptake and transport. These results indicate that oleate, palmatate, and stearic can enhance iron uptake and transport; however, this enhancement may be the result of alterations in the integrity of the intestine. A portion of the data was presented at Experimental Biology 96 as a poster session. E. A. Droke, L. K. Johnson, and H. C. Lukaski. Fatty acids affect iron uptake and transport in Caco-2 cells. FASEB J. 10, 1431 (1996).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号