首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the contribution the four outermost basic residues (K1, R2, R3, R4) in segment 4 of domain III in the human cardiac Na channel (hH1a, Na(V)1.5) to the total gating charge (Q(max)). Each of the four basic residues were mutated individually to a cysteine. In addition, R2 was also mutated to a glutamate. All mutant channels were transiently expressed with the alpha1 subunit in fused tsA201 cells. We used the relative reduction in Q(max) caused by anthopleurin-A (ApA) toxin, a site-3 toxin known to inhibit the movement of gating charge associated with domain IV, to estimate the size of the contribution from each basic residue. Studies of the toxin's ability to inhibit gating charge in mutant channels showed that R2 contributed 19-20% to the Q(max), R3 contributed 10%, and K1 and R4 made almost no contribution. In contrast to the outermost basic residue in the S4 of Shaker K channels and in the S4 of domain IV in hH1a, the outermost charge (K1) in domain III of Na channels is outside the voltage field.  相似文献   

2.
Site-3 toxins have been shown to inhibit a component of gating charge (33% of maximum gating charge, Q(max)) in native cardiac Na channels that has been identified with the open-to-inactivated state kinetic transition. To investigate the role of the three outermost arginine amino acid residues in segment 4 domain IV (R1, R2, R3) in gating charge inhibited by site-3 toxins, we recorded ionic and gating currents from human heart Na channels with mutations of the outermost arginines (R1C, R1Q, R2C, and R3C) expressed in fused, mammalian tsA201 cells. All four mutations had ionic currents that activated over the same voltage range with slope factors of their peak conductance-voltage (G-V) relationships similar to those of wild-type channels, although decay of I(Na) was slowest for R1C and R1Q mutant channels and fastest for R3C mutant channels. After Na channel modification by Ap-A toxin, decays of I(Na) were slowed to similar values for all four channel mutants. Toxin modification produced a graded effect on gating charge (Q) of mutant channels, reducing Q(max) by 12% for the R1C and R1Q mutants, by 22% for the R2C mutant, and by 27% for the R3C mutant, only slightly less than the 31% reduction seen for wild-type currents. Consistent with these findings, the relationship of Q(max) to G(max) was significantly shallower for R1 mutants than for R2C and R3C mutant Na channels. These data suggest that site-3 toxins primarily inhibit gating charge associated with movement of the S4 in domain IV, and that the outermost arginine contributes the largest amount to channel gating, with other arginines contributing less.  相似文献   

3.
4.
The primary voltage sensor of the sodium channel is comprised of four positively charged S4 segments that mainly differ in the number of charged residues and are expected to contribute differentially to the gating process. To understand their kinetic and steady-state behavior, the fluorescence signals from the sites proximal to each of the four S4 segments of a rat skeletal muscle sodium channel were monitored simultaneously with either gating or ionic currents. At least one of the kinetic components of fluorescence from every S4 segment correlates with movement of gating charge. The fast kinetic component of fluorescence from sites S216C (S4 domain I), S660C (S4 domain II), and L1115C (S4 domain III) is comparable to the fast component of gating currents. In contrast, the fast component of fluorescence from the site S1436C (S4 domain IV) correlates with the slow component of gating. In all the cases, the slow component of fluorescence does not have any apparent correlation with charge movement. The fluorescence signals from sites reflecting the movement of S4s in the first three domains initiate simultaneously, whereas the fluorescence signals from the site S1436C exhibit a lag phase. These results suggest that the voltage-dependent movement of S4 domain IV is a later step in the activation sequence. Analysis of equilibrium and kinetic properties of fluorescence over activation voltage range indicate that S4 domain III is likely to move at most hyperpolarized potentials, whereas the S4s in domain I and domain II move at more depolarized potentials. The kinetics of fluorescence changes from sites near S4-DIV are slower than the activation time constants, suggesting that the voltage-dependent movement of S4-DIV may not be a prerequisite for channel opening. These experiments allow us to map structural features onto the kinetic landscape of a sodium channel during activation.  相似文献   

5.
The hallmark of many intracellular pore blockers such as tetra-alkylammonium compounds and local anesthetics is their ability to allosterically modify the movement of the voltage sensors in voltage-dependent ion channels. For instance, the voltage sensor of domain III is specifically stabilized in the activated state when sodium currents are blocked by local anesthetics. The molecular mechanism underlying this long-range interaction between the blocker-binding site in the pore and voltage sensors remains poorly understood. Here, using scanning mutagenesis in combination with voltage clamp fluorimetry, we systematically evaluate the role of the internal gating interface of domain III of the sodium channel. We find that several mutations in the S4-S5 linker and S5 and S6 helices dramatically reduce the stabilizing effect of lidocaine on the activation of domain III voltage sensor without significantly altering use-dependent block at saturating drug concentrations. In the wild-type skeletal muscle sodium channel, local anesthetic block is accompanied by a 21% reduction in the total gating charge. In contrast, point mutations in this critical intracellular region reduce this charge modification by local anesthetics. Our analysis of a simple model suggests that these mutations in the gating interface are likely to disrupt the various coupling interactions between the voltage sensor and the pore of the sodium channel. These findings provide a molecular framework for understanding the mechanisms underlying allosteric interactions between a drug-binding site and voltage sensors.  相似文献   

6.
Alpha-scorpion toxins bind in a voltage-dependent way to site 3 of the sodium channels, which is partially formed by the loop connecting S3 and S4 segments of domain IV, slowing down fast inactivation. We have used Ts3, an alpha-scorpion toxin from the Brazilian scorpion Tityus serrulatus, to analyze the effects of this family of toxins on the muscle sodium channels expressed in Xenopus oocytes. In the presence of Ts3 the total gating charge was reduced by 30% compared with control conditions. Ts3 accelerated the gating current kinetics, decreasing the contribution of the slow component to the ON gating current decay, indicating that S4-DIV was specifically inhibited by the toxin. In addition, Ts3 accelerated and decreased the fraction of charge in the slow component of the OFF gating current decay, which reflects an acceleration in the recovery from the fast inactivation. Site-specific fluorescence measurements indicate that Ts3 binding to the voltage-gated sodium channel eliminates one of the components of the fluorescent signal from S4-DIV. We also measured the fluorescent signals produced by the movement of the first three voltage sensors to test whether the bound Ts3 affects the movement of the other voltage sensors. While the fluorescence-voltage (F-V) relationship of domain II was only slightly affected and the F-V of domain III remained unaffected in the presence of Ts3, the toxin significantly shifted the F-V of domain I to more positive potentials, which agrees with previous studies showing a strong coupling between domains I and IV. These results are consistent with the proposed model, in which Ts3 specifically impairs the fraction of the movement of the S4-DIV that allows fast inactivation to occur at normal rates.  相似文献   

7.
Sodium channels have four homologous domains (D1-D4) each with six putative transmembrane segments (S1-S6). The highly charged S4 segments in each domain are postulated voltage sensors for gating. We made 15 charge-neutralizing or -reversing substitutions in the first or third basic residues (arginine or lysine) by replacement with histidine, glutamine, or glutamate in S4 segments of each domain of the human heart Na+ channel. Nine of the mutations cause shifts in the conductance-voltage (G-V) midpoints, and all but two significantly decrease the voltage dependence of peak Na+ current, consistent with a role of S4 segments in activation. The decreases in voltage dependence of activation were equivalent to a decrease in apparent gating charge of 0.5-2.1 elementary charges (eo) per channel for single charge- neutralizing mutations. Three charge-reversing mutations gave decreases of 1.2-1.9 eo per channel in voltage dependence of activation. The steady-state inactivation (h infinity) curves were fit by single- component Boltzmann functions and show significant decreases in slope for 9 of the 15 mutants and shifts of midpoints in 9 mutants. The voltage dependence of inactivation time constants is markedly decreased by mutations only in S4D4, providing further evidence that this segment plays a unique role in activation-inactivation coupling.  相似文献   

8.
Deletion of a phenylalanine at position 1617 (delF1617) in the extracellular linker between segments S3 and S4 in domain IV of the human heart Na(+) channel (hH1a) has been tentatively associated with long QT syndrome type 3 (LQT3). In a mammalian cell expression system, we compared whole cell, gating, and single-channel currents of delF1617 with those of wild-type hH1a. The half points of the peak activation-voltage curve for the two channels were similar, as were the deactivation time constants at hyperpolarized test potentials. However, delF1617 demonstrated a significant negative shift of -7 mV in the half point of the voltage-dependent Na(+) channel availability curve compared with wild type. In addition, both the time course of decay of Na(+) current (I(Na)) and two-pulse development of inactivation of delF1617 were faster at negative test potentials, whereas they tended to be slower at positive potentials compared with wild type. Mean channel open times for delF1617 were shorter at potentials <0 mV, whereas they were longer at potentials >0 mV compared with wild type. Using anthopleurin-A, a site-3 toxin that inhibits movement of segment S4 in domain IV (S4-DIV), we found that gating charge contributed by the S4-DIV in delF1617 was reduced 37% compared with wild type. We conclude that deletion of a single amino acid in the S3-S4 linker of domain IV alters the voltage dependence of fast inactivation via a reduction in the gating charge contributed by S4-DIV and can cause either a gain or loss of I(Na), depending on membrane potential.  相似文献   

9.
Immobilizing the moving parts of voltage-gated ion channels   总被引:3,自引:0,他引:3  
Voltage-gated ion channels have at least two classes of moving parts, voltage sensors that respond to changes in the transmembrane potential and gates that create or deny permeant ions access to the conduction pathway. To explore the coupling between voltage sensors and gates, we have systematically immobilized each using a bifunctional photoactivatable cross-linker, benzophenone-4-carboxamidocysteine methanethiosulfonate, that can be tethered to cysteines introduced into the channel protein by mutagenesis. To validate the method, we first tested it on the inactivation gate of the sodium channel. The benzophenone-labeled inactivation gate of the sodium channel can be trapped selectively either in an open or closed state by ultraviolet irradiation at either a hyperpolarized or depolarized voltage, respectively. To verify that ultraviolet light can immobilize S4 segments, we examined its relative effects on ionic and gating currents in Shaker potassium channels, labeled at residue 359 at the extracellular end of the S4 segment. As predicted by the tetrameric stoichiometry of these potassium channels, ultraviolet irradiation reduces ionic current by approximately the fourth power of the gating current reduction, suggesting little cooperativity between the movements of individual S4 segments. Photocross-linking occurs preferably at hyperpolarized voltages after labeling residue 359, suggesting that depolarization moves the benzophenone adduct out of a restricted environment. Immobilization of the S4 segment of the second domain of sodium channels prevents channels from opening. By contrast, photocross-linking the S4 segment of the fourth domain of the sodium channel has effects on both activation and inactivation. Our results indicate that specific voltage sensors of the sodium channel play unique roles in gating, and suggest that movement of one voltage sensor, the S4 segment of domain 4, is at least a two-step process, each step coupled to a different gate.  相似文献   

10.
The role of the voltage sensor positive charges in the activation and deactivation gating of the rat brain IIA sodium channel was investigated by mutating the second and fourth conserved positive charges in the S4 segments of all four homologous domains. Both charge-neutralizing (by glutamine substitution) and -conserving mutations were constructed in a cDNA encoding the sodium channel α subunit that had fast inactivation removed by the incorporation of the IFMQ3 mutation in the III–IV linker (West, J.W., D.E. Patton, T. Scheuer, Y. Wang, A.L. Goldin, and W.A. Catterall. 1992. Proc. Natl. Acad. Sci. USA. 89:10910–10914.). A total of 16 single and 2 double mutants were constructed and analyzed with respect to voltage dependence and kinetics of activation and deactivation. The most significant effects were observed with substitutions of the fourth positive charge in each domain. Neutralization of the fourth positive charge in domain I or II produced the largest shifts in the voltage dependence of activation, both in the positive direction. This change was accompanied by positive shifts in the voltage dependence of activation and deactivation kinetics. Combining the two mutations resulted in an even larger positive shift in half-maximal activation and a significantly reduced gating valence, together with larger positive shifts in the voltage dependence of activation and deactivation kinetics. In contrast, neutralization of the fourth positive charge in domain III caused a negative shift in the voltage of half-maximal activation, while the charge-conserving mutation resulted in a positive shift. Neutralization of the fourth charge in domain IV did not shift the half-maximal voltage of activation, but the conservative substitution produced a positive shift. These data support the idea that both charge and structure are determinants of function in S4 voltage sensors. Overall, the data supports a working model in which all four S4 segments contribute to voltage-dependent activation of the sodium channel.  相似文献   

11.
The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1–S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1–S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I–III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.  相似文献   

12.
Voltage-gated sodium (NaV) channels contain an α-subunit incorporating the channel’s pore and gating machinery composed of four homologous domains (DI–DIV), with a pore domain formed by the S5 and S6 segments and a voltage-sensor domain formed by the S1–S4 segments. During a membrane depolarization movement, the S4s in the voltage-sensor domains exert downstream effects on the S6 segments to control ionic conductance through the pore domain. We used lidocaine, a local anesthetic and antiarrhythmic drug, to probe the role of conserved Asn residues in the S6s of DIII and DIV in NaV1.5 and NaV1.4. Previous studies have shown that lidocaine binding to the pore domain causes a decrease in the maximum gating (Qmax) charge of ∼38%, and three-fourths of this decrease results from the complete stabilization of DIII-S4 (contributing a 30% reduction in Qmax) and one-fourth is due to partial stabilization of DIV-S4 (a reduction of 8–10%). Even though substitutions for the Asn in DIV-S6 in NaV1.5, N1764A and N1764C, produce little ionic current in transfected mammalian cells, they both express robust gating currents. Anthopleurin-A toxin, which inhibits movement of DIV-S4, still reduced Qmax by nearly 30%, a value similar to that observed in wild-type channels, in both N1764A and N1764C. By applying lidocaine and measuring the gating currents, we demonstrated that Asn residues in the S6s of DIII and DIV are important for coupling their pore domains to their voltage-sensor domains, and that Ala and Cys substitutions for Asn in both S6s result in uncoupling of the pore domains from their voltage-sensor domains. Similar observations were made for NaV1.4, although substitutions for Asn in DIII-S6 showed somewhat less uncoupling.  相似文献   

13.
The voltage-sensing S4 segments in the sodium channel undergo conformational rearrangements in response to changes in the electric field. However, it remains unclear whether these structures move independently or in a coordinated manner. Previously, site-directed fluorescence measurements were shown to track S4 transitions in each of the four domains. Here, using a similar technique, we provide direct evidence of coupling interactions between voltage sensors in the sodium channel. Pairwise interactions between S4s were evaluated by comparing site-specific conformational changes in the presence and absence of a gating perturbation in a distal domain. Reciprocity of effect, a fundamental property of thermodynamically coupled systems, was measured by generating converse mutants. The magnitude of a local gating perturbation induced by a remote S4 mutation depends on the coupling strength and the relative equilibrium positions of the two voltage sensors. In general, our data indicates that the movement of all four voltage sensors in the sodium channel are coupled to a varying extent. Moreover, a gating perturbation in S4-DI has the largest effect on the activation of S4-DIV and vice versa, demonstrating an energetic linkage between S4-DI and S4-DIV. This result suggests a physical mechanism by which the activation and inactivation process may be coupled in voltage-gated sodium channels. In addition, we propose that cooperative interactions between voltage sensors may be the mechanistic basis for the fast activation kinetics of the sodium channel.  相似文献   

14.
beta-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3-S4 loop at the extracellular end of the S4 voltage sensor in domain II of the alpha subunit. Here, we probe the role of gating charges in the IIS4 segment in beta-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances beta-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the beta-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from -80 to -140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor-trapping model in which the beta-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.  相似文献   

15.
16.
The members of the voltage-dependent potassium channel family subserve a variety of functions and are expected to have voltage sensors with different sensitivities. The Shaker channel of Drosophila, which underlies a transient potassium current, has a high voltage sensitivity that is conferred by a large gating charge movement, approximately 13 elementary charges. A Shaker subunit's primary voltage-sensing (S4) region has seven positively charged residues. The Shab channel and its homologue Kv2.1 both carry a delayed-rectifier current, and their subunits have only five positively charged residues in S4; they would be expected to have smaller gating-charge movements and voltage sensitivities. We have characterized the gating currents and single-channel behavior of Shab channels and have estimated the charge movement in Shaker, Shab, and their rat homologues Kv1.1 and Kv2.1 by measuring the voltage dependence of open probability at very negative voltages and comparing this with the charge-voltage relationships. We find that Shab has a relatively small gating charge, approximately 7.5 e(o). Surprisingly, the corresponding mammalian delayed rectifier Kv2.1, which has the same complement of charged residues in the S2, S3, and S4 segments, has a gating charge of 12.5 e(o), essentially equal to that of Shaker and Kv1.1. Evidence for very strong coupling between charge movement and channel opening is seen in two channel types, with the probability of voltage-independent channel openings measured to be below 10(-9) in Shaker and below 4 x 10(-8) in Kv2.1.  相似文献   

17.
I Marten  T Hoshi 《Biophysical journal》1998,74(6):2953-2962
Functional roles of different domains (pore region, S4 segment, N-terminus) of the KAT1 potassium channel in its voltage-dependent gating were electrophysiologically studied in Xenopus oocytes. The KAT1 properties did not depend on the extracellular K+ concentration or on residue H267, equivalent to one of the residues known to be important in C-type inactivation in Shaker channels, indicating that the hyperpolarization-induced KAT1 inward currents are related to the channel activation rather than to recovery from inactivation. Neutralization of a positively charged amino acid in the S4 domain (R176S) reduced the gating charge movement, suggesting that it acts as a voltage-sensing residue in KAT1. N-terminal deletions alone (e.g., delta20-34) did not affect the gating charge movement. However, the deletions paradoxically increased the voltage sensitivity of the R176S mutant channel, but not that of the wild-type channel. We propose a simple model in which the N-terminus determines the KAT1 voltage sensitivity by contributing to the electric field sensed by the voltage sensor.  相似文献   

18.
Using site-directed fluorescent labeling, we examined conformational changes in the S4 segment of each domain of the human skeletal muscle sodium channel (hSkM1). The fluorescence signals from S4 segments in domains I and II follow activation and are unaffected as fast inactivation settles. In contrast, the fluorescence signals from S4 segments in domains III and IV show kinetic components during activation and deactivation that correlate with fast inactivation and charge immobilization. These results indicate that in hSkM1, the S4 segments in domains III and IV are responsible for voltage-sensitive conformational changes linked to fast inactivation and are immobilized by fast inactivation, while the S4 segments in domains I and II are unaffected by fast inactivation.  相似文献   

19.
Ding S  Horn R 《Biochemistry》2001,40(35):10707-10716
Voltage-gated ion channels have voltage sensors that move in response to changes in membrane potential. This movement regulates the gates that control access of ions to the permeation pathway. To study the coupling between voltage sensors and gates, we immobilize the voltage sensors, using a bifunctional photo-cross-linking reagent that can be attached to an introduced cysteine, and observe the consequences for gate movement [Horn, R., Ding, S., and Gruber, H. J. (2000) J. Gen. Physiol. 116, 461-475]. UV irradiation of the benzophenone adduct attached to the cysteine residue immobilizes the voltage sensors, S4 segments, of both Na(+) and Shaker K(+) channels. Here we examine the kinetics of S4 immobilization after a brief UV flash. Immobilization has an exponential time course with time constants of >200 ms for Shaker and 17 ms for Na(+) channels, whereas the triplet excited state lifetime of the benzophenone adduct is <1 ms. This result suggests that H-atom abstraction by benzophenone is rapid and that the rate-limiting step in immobilization is the recombination of alkyl and ketyl free radicals generated by H-abstraction. H-Abstraction is also 2.7-fold more efficient at a hyperpolarized voltage than at a depolarized membrane potential in Shaker S4 segments. S4 immobilization after a UV flash can be prevented by depolarization of Shaker channels, suggesting that movement in the activation pathway is capable of separating the ketyl and alkyl free radicals. Exploiting the unique charge movement and gating properties of the L382V mutant of Shaker, we show that free radical separation follows S4 movement itself and is relatively independent of the movement of activation gates.  相似文献   

20.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号